AC Portal
Document Navigator

Chronic Liver Disease

Variant: 1   Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
Procedure Appropriateness Category Relative Radiation Level
US shear wave elastography abdomen Usually Appropriate O
MR elastography abdomen Usually Appropriate O
US abdomen May Be Appropriate O
US abdomen with IV contrast May Be Appropriate O
US duplex Doppler abdomen May Be Appropriate O
MRI abdomen without and with hepatobiliary contrast May Be Appropriate O
MRI abdomen without and with IV contrast May Be Appropriate O
MRI abdomen without IV contrast May Be Appropriate O
CT abdomen with IV contrast multiphase May Be Appropriate ☢☢☢☢
CT abdomen without IV contrast Usually Not Appropriate ☢☢☢
CT abdomen without and with IV contrast Usually Not Appropriate ☢☢☢☢
FDG-PET/CT skull base to mid-thigh Usually Not Appropriate ☢☢☢☢

Variant: 2   Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
Procedure Appropriateness Category Relative Radiation Level
US abdomen Usually Appropriate O
MRI abdomen without and with hepatobiliary contrast Usually Appropriate O
MRI abdomen without and with IV contrast Usually Appropriate O
US duplex Doppler abdomen May Be Appropriate (Disagreement) O
MRI abdomen without IV contrast May Be Appropriate O
CT abdomen with IV contrast multiphase May Be Appropriate (Disagreement) ☢☢☢☢
US abdomen with IV contrast Usually Not Appropriate O
US shear wave elastography abdomen Usually Not Appropriate O
MR elastography abdomen Usually Not Appropriate O
CT abdomen without IV contrast Usually Not Appropriate ☢☢☢
CT abdomen without and with IV contrast Usually Not Appropriate ☢☢☢☢
FDG-PET/CT skull base to mid-thigh Usually Not Appropriate ☢☢☢☢

Variant: 3   Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
Procedure Appropriateness Category Relative Radiation Level
MRI abdomen without and with hepatobiliary contrast Usually Appropriate O
MRI abdomen without and with IV contrast Usually Appropriate O
CT abdomen with IV contrast multiphase Usually Appropriate ☢☢☢☢
CT abdomen without and with IV contrast Usually Appropriate ☢☢☢☢
US abdomen May Be Appropriate O
US abdomen with IV contrast May Be Appropriate O
MRI abdomen without IV contrast May Be Appropriate O
US duplex Doppler abdomen Usually Not Appropriate O
US shear wave elastography abdomen Usually Not Appropriate O
MR elastography abdomen Usually Not Appropriate O
CT abdomen without IV contrast Usually Not Appropriate ☢☢☢
FDG-PET/CT skull base to mid-thigh Usually Not Appropriate ☢☢☢☢

Mustafa R. Bashir, MDa; Jeanne M. Horowitz, MDb; Ihab R. Kamel, MD, PhDc; Hina Arif-Tiwari, MDd; Sumeet K. Asrani, MD, MSce; Victoria Chernyak, MD, MSf; Alan Goldstein, MDg; Joseph R. Grajo, MDh; Nicole M. Hindman, MDi; Aya Kamaya, MDj; Michelle M. McNamara, MDk; Kristin K. Porter, MD, PhDl; Lilja B. Solnes, MD, MBAm; Pavan K. Srivastava, MDn; Atif Zaheer, MDo; Laura R. Carucci, MDp.
Summary of Literature Review
Introduction/Background
Discussion of Procedures by Variant
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
A. CT Abdomen
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
B. FDG-PET/CT Skull Base to Mid-Thigh
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
C. MR Elastography Abdomen 
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
D. MRI Abdomen
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
E. US Abdomen
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
F. US Abdomen with IV Contrast
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
G. US Shear Wave Elastography Abdomen
Variant 1: Chronic liver disease. Diagnosis and staging of liver fibrosis. Initial imaging.
H. US Duplex Doppler Abdomen
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
A. CT Abdomen
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
B. FDG-PET/CT Skull Base to Mid-Thigh
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
C. MR Elastography Abdomen
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
D. MRI Abdomen
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
E. US Abdomen
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
F. US Abdomen with IV Contrast
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
G. US Shear Wave Elastography Abdomen
Variant 2: Chronic liver disease. No prior diagnosis of hepatocellular carcinoma (HCC). Screening and surveillance for HCC.
H. US Duplex Doppler Abdomen
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
A. CT Abdomen
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
B. FDG-PET/CT Skull Base to Mid-Thigh
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
C. MR Elastography Abdomen 
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
D. MRI Abdomen
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
E. US Abdomen
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
F. US Abdomen with IV Contrast
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
G. US Shear Wave Elastography Abdomen
Variant 3: Chronic liver disease. Previous diagnosis of HCC. Post-treatment monitoring for HCC.
H. US Duplex Doppler Abdomen
Summary of Highlights
Supporting Documents

The evidence table, literature search, and appendix for this topic are available at https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the final rating round tabulations for each recommendation.

For additional information on the Appropriateness Criteria methodology and other supporting documents, please go to the ACR website at https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria.

Appropriateness Category Names and Definitions

Appropriateness Category Name

Appropriateness Rating

Appropriateness Category Definition

Usually Appropriate

7, 8, or 9

The imaging procedure or treatment is indicated in the specified clinical scenarios at a favorable risk-benefit ratio for patients.

May Be Appropriate

4, 5, or 6

The imaging procedure or treatment may be indicated in the specified clinical scenarios as an alternative to imaging procedures or treatments with a more favorable risk-benefit ratio, or the risk-benefit ratio for patients is equivocal.

May Be Appropriate (Disagreement)

5

The individual ratings are too dispersed from the panel median. The different label provides transparency regarding the panel’s recommendation. “May be appropriate” is the rating category and a rating of 5 is assigned.

Usually Not Appropriate

1, 2, or 3

The imaging procedure or treatment is unlikely to be indicated in the specified clinical scenarios, or the risk-benefit ratio for patients is likely to be unfavorable.

Relative Radiation Level Information

Potential adverse health effects associated with radiation exposure are an important factor to consider when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures associated with different diagnostic procedures, a relative radiation level (RRL) indication has been included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose quantity that is used to estimate population total radiation risk associated with an imaging procedure. Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as compared with those specified for adults (see Table below). Additional information regarding radiation dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation Dose Assessment Introduction document.

Relative Radiation Level Designations

Relative Radiation Level*

Adult Effective Dose Estimate Range

Pediatric Effective Dose Estimate Range

O

0 mSv

 0 mSv

<0.1 mSv

<0.03 mSv

☢☢

0.1-1 mSv

0.03-0.3 mSv

☢☢☢

1-10 mSv

0.3-3 mSv

☢☢☢☢

10-30 mSv

3-10 mSv

☢☢☢☢☢

30-100 mSv

10-30 mSv

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in these procedures vary as a function of a number of factors (e.g., region of the body exposed to ionizing radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”

References
1. Jang HJ, Kim TK, Wilson SR. Small nodules (1-2 cm) in liver cirrhosis: characterization with contrast-enhanced ultrasound. Eur J Radiol. 72(3):418-24, 2009 Dec.
2. Armstrong GL, Wasley A, Simard EP, McQuillan GM, Kuhnert WL, Alter MJ. The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med. 2006;144(10):705-714.
3. Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97(10):2614-2618.
4. Parkes J, Guha IN, Roderick P, Rosenberg W. Performance of serum marker panels for liver fibrosis in chronic hepatitis C. J Hepatol. 2006;44(3):462-474.
5. Di Lelio A, Cestari C, Lomazzi A, Beretta L. Cirrhosis: diagnosis with sonographic study of the liver surface. Radiology. 1989;172(2):389-392.
6. Simonovsky V. The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. Br J Radiol. 72(853):29-34, 1999 Jan.
7. Torres WE, Whitmire LF, Gedgaudas-McClees K, Bernardino ME. Computed tomography of hepatic morphologic changes in cirrhosis of the liver. J Comput Assist Tomogr. 1986;10(1):47-50.
8. Ito K, Mitchell DG, Kim MJ, Awaya H, Koike S, Matsunaga N. Right posterior hepatic notch sign: a simple diagnostic MR finding of cirrhosis. J Magn Reson Imaging. 18(5):561-6, 2003 Nov.
9. Colli A, Colucci A, Paggi S, et al. Accuracy of a predictive model for severe hepatic fibrosis or cirrhosis in chronic hepatitis C. World J Gastroenterol. 2005;11(46):7318-7322.
10. Bonekamp S, Kamel I, Solga S, Clark J. Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately?. J Hepatol. 2009 Jan;50(1):17-35.
11. Tchelepi H, Ralls PW, Radin R, Grant E. Sonography of diffuse liver disease. [Review] [27 refs]. J Ultrasound Med. 21(9):1023-32; quiz 1033-4, 2002 Sep.
12. Kawanaka H, Kinjo N, Anegawa G, et al. Abnormality of the hepatic vein waveforms in cirrhotic patients with portal hypertension and its prognostic implications. J Gastroenterol Hepatol. 2008;23(7 Pt 2):e129-136.
13. Oguzkurt L, Yildirim T, Torun D, Tercan F, Kizilkilic O, Niron EA. Hepatic vein Doppler waveform in patients with diffuse fatty infiltration of the liver. Eur J Radiol. 2005;54(2):253-257.
14. Arena U, Vizzutti F, Corti G, et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology. 2008 Feb;47(2):380-4.
15. Millonig G, Reimann FM, Friedrich S, et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology. 2008;48(5):1718-1723.
16. Bonekamp D, Bonekamp S, Geiger B, Kamel IR. An elevated arterial enhancement fraction is associated with clinical and imaging indices of liver fibrosis and cirrhosis. J Comput Assist Tomogr. 2012;36(6):681-689.
17. Choi YR, Lee JM, Yoon JH, Han JK, Choi BI. Comparison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evaluation of hepatic fibrosis. Invest Radiol. 2013 Aug;48(8):607-13.
18. Watanabe H, Kanematsu M, Goshima S, et al. Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging--preliminary observations. Radiology. 259(1):142-50, 2011 Apr.
19. Wang QB, Zhu H, Liu HL, Zhang B. Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis: A meta-analysis. Hepatology. 2012;56(1):239-247.
20. Chen BB, Hsu CY, Yu CW, et al. Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol. 22(1):171-80, 2012 Jan.
21. Forner A, Vilana R, Ayuso C, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 47(1):97-104, 2008 Jan.
22. American College of Radiology. Liver Imaging Reporting and Data System (LI-RADS).  Available at: http://www.acr.org/quality-safety/resources/LIRADS.
23. Forner A, Reig M, Bruix J. Alpha-fetoprotein for hepatocellular carcinoma diagnosis: the demise of a brilliant star. Gastroenterology. 2009;137(1):26-29.
24. Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim WR. Underestimation of liver-related mortality in the United States. Gastroenterology. 2013;145(2):375-382 e371-372.
25. Davis GL, Alter MJ, El-Serag H, Poynard T, Jennings LW. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology. 2010;138(2):513-521, 521 e511-516.
26. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. Liver biopsy. Hepatology. 2009;49(3):1017-1044.
27. Martin DR, Lauenstein T, Kalb B, et al. Liver MRI and histological correlates in chronic liver disease on multiphase gadolinium-enhanced 3D gradient echo imaging. J Magn Reson Imaging. 36(2):422-9, 2012 Aug.
28. American College of Radiology. ACR Appropriateness Criteria®: Liver Lesion — Initial Characterization. Available at: https://acsearch.acr.org/docs/69472/Narrative/.
29. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020-1022.
30. Akai H, Kiryu S, Matsuda I, et al. Detection of hepatocellular carcinoma by Gd-EOB-DTPA-enhanced liver MRI: comparison with triple phase 64 detector row helical CT. Eur J Radiol. 2011;80(2):310-315.
31. Inoue T, Kudo M, Komuta M, et al. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT. J Gastroenterol. 2012;47(9):1036-1047.
32. Yu NC, Chaudhari V, Raman SS, et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis. Clin Gastroenterol Hepatol. 9(2):161-7, 2011 Feb.
33. Luca A, Caruso S, Milazzo M, et al. Multidetector-row computed tomography (MDCT) for the diagnosis of hepatocellular carcinoma in cirrhotic candidates for liver transplantation: prevalence of radiological vascular patterns and histological correlation with liver explants. Eur Radiol. 20(4):898-907, 2010 Apr.
34. Nasr P, Hilliges A, Thorelius L, Kechagias S, Ekstedt M. Contrast-enhanced ultrasonography could be a non-invasive method for differentiating none or mild from severe fibrosis in patients with biopsy proven non-alcoholic fatty liver disease. Scand J Gastroenterol. 51(9):1126-32, 2016 Sep.
35. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. [Review]. Hepatol Int. 11(4):317-370, 2017 Jul.
36. Pickhardt PJ, Malecki K, Kloke J, Lubner MG. Accuracy of Liver Surface Nodularity Quantification on MDCT as a Noninvasive Biomarker for Staging Hepatic Fibrosis. AJR. American Journal of Roentgenology. 207(6):1194-1199, 2016 Dec.
37. Smith AD, Zand KA, Florez E, et al. Liver Surface Nodularity Score Allows Prediction of Cirrhosis Decompensation and Death. Radiology. 283(3):711-722, 2017 06.
38. Ronot M, Vilgrain V. Imaging of benign hepatocellular lesions: current concepts and recent updates. [Review]. Clin Res Hepatol Gastroenterol. 38(6):681-8, 2014 Dec.
39. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 68(2):723-750, 2018 Aug.
40. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 67(1):358-380, 2018 01.
41. Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999-2016: observational study. BMJ. 362:k2817, 2018 07 18.
42. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019;70:151-71.
43. Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 2000;32:792-7.
44. Morgan RL, Baack B, Smith BD, Yartel A, Pitasi M, Falck-Ytter Y. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies. Ann Intern Med. 2013;158(5 Pt 1):329-337.
45. Zissen MH, Wang ZJ, Yee J, Aslam R, Monto A, Yeh BM. Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. AJR Am J Roentgenol. 201(6):1204-10, 2013 Dec.
46. Varenika V, Fu Y, Maher JJ, et al. Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT. Radiology. 266(1):151-8, 2013 Jan.
47. Chou CT, Chen RC, Wu WP, Lin PY, Chen YL. Prospective Comparison of the Diagnostic Performance of Magnetic Resonance Elastography with Acoustic Radiation Force Impulse Elastography for Pre-operative Staging of Hepatic Fibrosis in Patients with Hepatocellular Carcinoma. Ultrasound Med Biol. 2017 Dec;43(12):S0301-5629(17)32240-8.
48. Marrero JA, Hussain HK, Nghiem HV, Umar R, Fontana RJ, Lok AS. Improving the prediction of hepatocellular carcinoma in cirrhotic patients with an arterially-enhancing liver mass. Liver Transpl. 11(3):281-9, 2005 Mar.
49. Ooka Y, Kanai F, Okabe S, et al. Gadoxetic acid-enhanced MRI compared with CT during angiography in the diagnosis of hepatocellular carcinoma. Magn Reson Imaging. 31(5):748-54, 2013 Jun.
50. Rhee H, Kim MJ, Park MS, Kim KA. Differentiation of early hepatocellular carcinoma from benign hepatocellular nodules on gadoxetic acid-enhanced MRI. Br J Radiol. 2012;85(1018):e837-844.
51. Kudo M. Real practice of hepatocellular carcinoma in Japan: conclusions of the Japan Society of Hepatology 2009 Kobe Congress. Oncology. 2010;78 Suppl 1:180-188.
52. Hu X, Qiu L, Liu D, Qian L. Acoustic Radiation Force Impulse (ARFI) Elastography for non-invasive evaluation of hepatic fibrosis in chronic hepatitis B and C patients: a systematic review and meta-analysis. Med Ultrason. 2017 Jan 31;19(1):23-31.
53. Liu X, Jiang H, Chen J, Zhou Y, Huang Z, Song B. Gadoxetic acid disodium-enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: A meta-analysis. [Review]. Liver Transpl. 23(12):1505-1518, 2017 12.
54. Singal AG, Mittal S, Yerokun OA, et al. Hepatocellular Carcinoma Screening Associated with Early Tumor Detection and Improved Survival Among Patients with Cirrhosis in the US. Am J Med 2017;130:1099-106 e1.
55. Yang B, Zhang B, Xu Y, et al. Prospective study of early detection for primary liver cancer. Journal of Cancer Research & Clinical Oncology. 123(6):357-60, 1997.
56. Choi DT, Kum HC, Park S, et al. Hepatocellular Carcinoma Screening Is Associated With Increased Survival of Patients With Cirrhosis. Clinical Gastroenterology & Hepatology. 17(5):976-987.e4, 2019 Apr.
57. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging. 2013 Mar;37(3):544-55.
58. Park H, Park JY, Kim DY, et al. Characterization of focal liver masses using acoustic radiation force impulse elastography. World Journal of Gastroenterology. 19(2):219-26, 2013 Jan 14.
59. Korean Liver Cancer Association (KLCA), National Cancer Center (NCC), Goyang, Korea. 2018 Korean Liver Cancer Association-National Cancer Center Korea Practice Guidelines for the Management of Hepatocellular Carcinoma. [Review]. Korean Journal of Radiology. 20(7):1042-1113, 2019 Jul.
60. Clinical Practice Guidelines for Hepatocellular Carcinoma Differ between Japan, United States, and Europe. Liver Cancer 2015;4:85-95.
61. Hu J, Bhayana D, Burak KW, Wilson SR. Resolution of indeterminate MRI with CEUS in patients at high risk for hepatocellular carcinoma. Abdominal Radiology. 45(1):123-133, 2020 01.
62. Kim G, Shim KY, Baik SK. Diagnostic Accuracy of Hepatic Vein Arrival Time Performed with Contrast-Enhanced Ultrasonography for Cirrhosis: A Systematic Review and Meta-Analysis. Gut Liver. 2017 Jan 15;11(1):93-101.
63. Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. [Review]. Radiology. 272(3):635-54, 2014 Sep.
64. Doyle DJ, O&#39;Malley ME, Jang HJ, Jhaveri K. Value of the unenhanced phase for detection of hepatocellular carcinomas 3 cm or less when performing multiphase computed tomography in patients with cirrhosis. J Comput Assist Tomogr. 31(1):86-92, 2007 Jan-Feb.
65. Iannaccone R, Laghi A, Catalano C, et al. Hepatocellular carcinoma: role of unenhanced and delayed phase multi-detector row helical CT in patients with cirrhosis. Radiology. 234(2):460-7, 2005 Feb.
66. D&#39;Onofrio M, Faccioli N, Zamboni G, et al. Focal liver lesions in cirrhosis: value of contrast-enhanced ultrasonography compared with Doppler ultrasound and alpha-fetoprotein levels. Radiol Med (Torino). 113(7):978-91, 2008 Oct.
67. Wang JH, Lu SN, Hung CH, et al. Small hepatic nodules (&#60; or =2 cm) in cirrhosis patients: characterization with contrast-enhanced ultrasonography. Liver Int. 26(8):928-34, 2006 Oct.
68. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908-943.
69. Claudon M, Dietrich CF, Choi BI, et al. Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver - update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol. 2013;39(2):187-210.
70. Singh S, Venkatesh SK, Wang Z, et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol. 2015 Mar;13(3):S1542-3565(14)01395-0.
71. Gallotti A, D'Onofrio M, Romanini L, Cantisani V, Pozzi Mucelli R. Acoustic Radiation Force Impulse (ARFI) ultrasound imaging of solid focal liver lesions. Eur J Radiol. 81(3):451-5, 2012 Mar.
72. Wang XY, Chen D, Zhang XS, Chen ZF, Hu AB. Value of 18F-FDG-PET/CT in the detection of recurrent hepatocellular carcinoma after hepatectomy or radiofrequency ablation: a comparative study with contrast-enhanced ultrasound. J Dig Dis. 14(8):433-8, 2013 Aug.
73. Jiang T, Zhao Q, Huang M, Sun J, Tian G. Contrast-Enhanced Ultrasound in Residual Tumor of Hepatocellular Carcinoma following Transarterial Chemoembolization: Is It Helpful for Tumor Response?. Biomed Res Int. 2018:8632069, 2018.
74. Cao J, Dong Y, Mao F, Wang W. Dynamic Three-Dimensional Contrast-Enhanced Ultrasound to Predict Therapeutic Response of Radiofrequency Ablation in Hepatocellular Carcinoma: Preliminary Findings. Biomed Res Int. 2018:6469703, 2018.
75. NCCN Clinical Practice Guidelines in Oncology. Hepatobiliary Cancers. Version 1.2018.  Available at: https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf. Accessed December 30, 2018
76. Pietryga JA, Burke LM, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology. 271(2):426-34, 2014 May.
77. Allen BC, Ho LM, Jaffe TA, Miller CM, Mazurowski MA, Bashir MR. Comparison of Visualization Rates of LI-RADS Version 2014 Major Features With IV Gadobenate Dimeglumine or Gadoxetate Disodium in Patients at Risk for Hepatocellular Carcinoma. AJR. American Journal of Roentgenology. 210(6):1266-1272, 2018 Jun.
78. Roberts LR, Sirlin CB, Zaiem F, et al. Imaging for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis. [Review]. Hepatology. 67(1):401-421, 2018 01.
79. Marks RM, Ryan A, Heba ER, et al. Diagnostic per-patient accuracy of an abbreviated hepatobiliary phase gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance. AJR Am J Roentgenol. 204(3):527-35, 2015 Mar.
80. Besa C, Lewis S, Pandharipande PV, et al. Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol. 42(1):179-190, 2017 01.
81. Tillman BG, Gorman JD, Hru JM, et al. Diagnostic per-lesion performance of a simulated gadoxetate disodium-enhanced abbreviated MRI protocol for hepatocellular carcinoma screening. Clin Radiol. 73(5):485-493, 2018 May.
82. Zhang P, Zhou P, Tian SM, Qian Y, Deng J, Zhang L. Application of acoustic radiation force impulse imaging for the evaluation of focal liver lesion elasticity. Hepatobiliary Pancreat Dis Int. 12(2):165-70, 2013 Apr.
83. American College of Radiology. ACR Appropriateness Criteria® Radiation Dose Assessment Introduction. Available at: https://edge.sitecorecloud.io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/Clinical/Appropriateness-Criteria/ACR-Appropriateness-Criteria-Radiation-Dose-Assessment-Introduction.pdf.
84. Starekova J, Hernando D, Pickhardt PJ, Reeder SB. Quantification of Liver Fat Content with CT and MRI: State of the Art. [Review]. Radiology. 301(2):250-262, 2021 11.
85. Narayanasamy S, Franca M, Idilman IS, Yin M, Venkatesh SK. Advanced Imaging Techniques for Assessing Fat, Iron, and Fibrosis in Chronic Liver Disease. Gut Liver. 2025 Jan 15;19(1):31-42.
86. Ajmera V, Kim BK, Yang K, et al. Liver Stiffness on Magnetic Resonance Elastography and the MEFIB Index and Liver-Related Outcomes in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Individual Participants. Gastroenterology. 2022 Oct;163(4):S0016-5085(22)00735-1.
87. Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol Metab. 2021 Aug;50():101167.
88. Ali Mohamed Aboughonaim A, Naguib Ettaby A, Ibrahim El-Noueum K, Hassab H, Emara DM. Dual gradient echo in-phase and out of phase sequences in assessment of hepatic iron overload in patients with beta-thalassemia, would be better?. Eur J Radiol. 2022 Sep;154():S0720-048X(22)00262-5.
89. Alves VPV, Mouzaki M, Xanthakos SA, et al. Longitudinal evaluation of pediatric and young adult metabolic dysfunction-associated steatotic liver disease defined by MR elastography. Eur Radiol. 2025 May;35(5):2474-2486.
90. Barr RG. Multiparametric Ultrasound for Chronic Liver Disease. Radiol Clin North Am. 2025 Jan;63(1):S0033-8389(24)00100-3.
91. Basso L, Baldi D, Mannelli L, Cavaliere C, Salvatore M, Brancato V. Investigating Dual-Energy CT Post-Contrast Phases for Liver Iron Quantification: A Preliminary Study. Dose Response. 2021;19(2):15593258211011359.
92. Bastati N, Perkonigg M, Sobotka D, et al. Correlation of histologic, imaging, and artificial intelligence features in NAFLD patients, derived from Gd-EOB-DTPA-enhanced MRI: a proof-of-concept study. Eur Radiol. 2023 Nov;33(11):7729-7743.
93. Beyer C, Andersson A, Shumbayawonda E, et al. Quantitative MRI for Monitoring Metabolic Dysfunction-Associated Steatotic Liver Disease: A Test-Retest Repeatability Study. J Magn Reson Imaging. 2025 Apr;61(4):1947-1955.
94. Buelo CJ, Velikina J, Mao L, et al. Multicenter, multivendor validation of liver quantitative susceptibility mapping in patients with iron overload at 1.5?T and 3?T. Magn Reson Med. 2025 Jan;93(1):330-340.
95. Cannella R, Agnello F, Porrello G, et al. Performance of ultrasound-guided attenuation parameter and 2D shear wave elastography in patients with metabolic dysfunction-associated steatotic liver disease. Eur Radiol. 2025 Apr;35(4):2339-2350.
96. Chan WK, Petta S, Noureddin M, Goh GBB, Wong VW. Diagnosis and non-invasive assessment of MASLD in type 2 diabetes and obesity. Aliment Pharmacol Ther. 2024 Jun;59 Suppl 1():S23-S40.
97. Cui J, Philo L, Nguyen P, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial. J Hepatol. 2016 Aug;65(2):S0168-8278(16)30165-9.
98. Dag N, Igci G, Yagin FH, Hanci MS, Kutlu R. Interobserver Reproducibility of Ultrasound Attenuation Imaging Technology in Liver Fat Quantification. J Clin Ultrasound. 2025;53(3):405-412.
99. de Franchis R, Bosch J, Garcia-Tsao G, Reiberger T, Ripoll C, Baveno VII - Renewing consensus in portal hypertension. J Hepatol. 2022 Apr;76(4):S0168-8278(21)02299-6.
100. De Robertis R, Spoto F, Autelitano D, et al. Ultrasound-derived fat fraction for detection of hepatic steatosis and quantification of liver fat content. Radiol Med. 2023 Oct;128(10):1174-1180.
101. Dell T, Mesropyan N, Layer Y, et al. Photon-counting CT-derived Quantification of Hepatic Fat Fraction: A Clinical Validation Study. Radiology. 2025 Mar;314(3):e241677.
102. Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology. 2017 May;65(5):1557-1565.
103. Farmakis SG, Buchanan PM, Guzman MA, Hardy AK, Jain AK, Teckman JH. Shear wave elastography correlates with liver fibrosis scores in pediatric patients with liver disease. Pediatr Radiol. 2019 Dec;49(13):1742-1753.
104. Ferraioli G, Barr RG, Berzigotti A, et al. WFUMB Guideline/Guidance on Liver Multiparametric Ultrasound: Part 1. Update to 2018 Guidelines on Liver Ultrasound Elastography. Ultrasound Med Biol. 2024 Aug;50(8):S0301-5629(24)00142-X.
105. Ferraioli G, Barr RG. Ultrasound evaluation of chronic liver disease. Abdom Radiol (NY). 2025 Mar;50(3):1158-1170.
106. Ferraioli G, Kumar V, Ozturk A, Nam K, de Korte CL, Barr RG. US Attenuation for Liver Fat Quantification: An AIUM-RSNA QIBA Pulse-Echo Quantitative Ultrasound Initiative. Radiology. 2022 Mar;302(3):495-506.
107. Virarkar MK, Vulasala SSR, Gupta AV, et al. Virtual Non-contrast Imaging in The Abdomen and The Pelvis: An Overview. [Review]. Seminars in Ultrasound, CT & MR. 43(4):293-310, 2022 Aug.Semin Ultrasound CT MR. 43(4):293-310, 2022 Aug.
108. Lawrence EM, Pooler BD, Pickhardt PJ. Opportunistic Screening for Hereditary Hemochromatosis With Unenhanced CT: Determination of an Optimal Liver Attenuation Threshold. AJR Am J Roentgenol. 2018 Dec;211(6):1206-1211.
109. Qi H, Jiang S, Nan J, et al. Application and research progress of magnetic resonance proton density fat fraction in metabolic dysfunction-associated steatotic liver disease: a comprehensive review. Abdom Radiol (NY). 2025 Jan;50(1):185-197.
110. Kemp JM, Ghosh A, Dillman JR, et al. Practical approach to quantitative liver and pancreas MRI in children. Pediatr Radiol. 2025 Jan;55(1):36-57.
111. Toia GV, Mileto A, Wang CL, Sahani DV. Quantitative dual-energy CT techniques in the abdomen. Abdom Radiol (NY). 2022 Sep;47(9):3003-3018.
112. Luo XF, Xie XQ, Cheng S, et al. Dual-Energy CT for Patients Suspected of Having Liver Iron Overload: Can Virtual Iron Content Imaging Accurately Quantify Liver Iron Content?. Radiology. 277(1):95-103, 2015 Oct.
113. Tian L, Liu S, Zhou H, Wu Y. DWI-Derived Sequences: Application in the Evaluation of Liver Fibrosis. Curr Med Imaging. 2024;20():e15734056326012.
114. Maruyama H, Shiha G, Yokosuka O, et al. Non-invasive assessment of portal hypertension and liver fibrosis using contrast-enhanced ultrasonography. Hepatol Int. 2016 Mar;10(2):267-76.
115. Pickhardt PJ, Lubner MG. Noninvasive Quantitative CT for Diffuse Liver Diseases: Steatosis, Iron Overload, and Fibrosis. [Review]. Radiographics. 45(1):e240176, 2025 01.
116. Serai SD, Trout AT. Can MR elastography be used to measure liver stiffness in patients with iron overload?. Abdom Radiol (NY). 2019 Jan;44(1):104-109.
117. Virtanen JM, Pudas TK, Ratilainen JA, Saunavaara JP, Komu ME, Parkkola RK. Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease. Br J Radiol. 85(1014):e162-7, 2012 Jun.
118. Meloni A, Positano V, Ricchi P, Pepe A, Cau R. What is the importance of monitoring iron levels in different organs over time with magnetic resonance imaging in transfusion-dependent thalassemia patients?. Expert Rev Hematol. 2025 Apr;18(4):291-299.
119. Pierce TT, Ozturk A, Sherlock SP, et al. Reproducibility and Repeatability of US Shear-Wave and Transient Elastography in Nonalcoholic Fatty Liver Disease. Radiology. 2024 Sep;312(3):e233094.
120. Jang JK, Choi SH, Lee JS, Kim SY, Lee SS, Kim KW. Accuracy of the ultrasound attenuation coefficient for the evaluation of hepatic steatosis: a systematic review and meta-analysis of prospective studies. Ultrasonography. 2022 Jan;41(1):83-92.
121. Garcovich M, Veraldi S, Di Stasio E, et al. Liver Stiffness in Pediatric Patients with Fatty Liver Disease: Diagnostic Accuracy and Reproducibility of Shear-Wave Elastography. Radiology. 2017 Jun;283(3):820-827.
122. Xu X, Zhang Y, Zhu Q, et al. Diagnostic accuracy of two-dimensional shear wave elastography and point shear wave elastography in identifying different stages of liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease: A meta-analysis. Biomol Biomed. 2025 Mar 07;25(4):810-821.
123. Hegde S, Pierce TT, Heidari F, et al. Noninvasive Assessment of Liver Fibrosis in Patients With Iron Overload. Ultrasound Med Biol. 2025 Mar;51(3):S0301-5629(24)00441-1.
124. Huang Z, Zhou J, Lu X, et al. How does liver steatosis affect diagnostic performance of 2D-SWE.SSI: assessment from aspects of steatosis degree and pathological types. Eur Radiol. 2021 May;31(5):3207-3215.
125. Meng F, Pian L, Wang Q, Chen J, Liu Y, Zhao J. Ultrasound-guided attenuation parameter: a liver fat quantification technique for forecasting the progression of metabolic dysfunction-associated steatotic liver disease in overweight/obese patients. Clin Radiol. 2025 May;84():S0009-9260(25)00059-5.
126. Xanthakos SA, Ibrahim SH, Adams K, et al. AASLD Practice Statement on the evaluation and management of metabolic dysfunction-associated steatotic liver disease in children. Hepatology. 2025 Apr 29;().
127. Gidener T, Dierkhising RA, Mara KC, et al. Change in serial liver stiffness measurement by magnetic resonance elastography and outcomes in NAFLD. Hepatology. 2023 Jan 01;77(1):268-274.
128. Serai SD, Dhyani M, Srivastava S, Dillman JR. MR and Ultrasound for Liver Fat Assessment in Children: Techniques and Supporting Evidence. J Magn Reson Imaging. 2025 Sep;62(3):691-706.
129. Newsome PN, Sasso M, Deeks JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 2020 Apr;5(4):S2468-1253(19)30383-8.
130. Ferraioli G, Maiocchi L, Savietto G, et al. Performance of the Attenuation Imaging Technology in the Detection of Liver Steatosis. J Ultrasound Med. 2021 Jul;40(7):1325-1332.
131. Fujiwara Y, Kuroda H, Abe T, et al. Impact of shear wave elastography and attenuation imaging for predicting life-threatening event in patients with metabolic dysfunction-associated steatotic liver disease. Sci Rep. 2025 Feb 07;15(1):4547.
132. Gidener T, Yin M, Dierkhising RA, Allen AM, Ehman RL, Venkatesh SK. Magnetic resonance elastography for prediction of long-term progression and outcome in chronic liver disease: A retrospective study. Hepatology. 2022 Feb;75(2):379-390.
133. Guo Z, Blake GM, Li K, et al. Liver Fat Content Measurement with Quantitative CT Validated against MRI Proton Density Fat Fraction: A Prospective Study of 400 Healthy Volunteers. Radiology. 2020 Jan;294(1):89-97.
134. Haghshomar M, Antonacci D, Smith AD, Thaker S, Miller FH, Borhani AA. Diagnostic Accuracy of CT for the Detection of Hepatic Steatosis: A Systematic Review and Meta-Analysis. Radiology. 2024 Nov;313(2):e241171.
135. Hattapoglu S, Çetinçakmak MG. Evaluation of iron overload in visceral organs in thalassemia patients by point shear-wave elastography. Ir J Med Sci. 2024 Oct;193(5):2407-2412.
136. Kudo M, Zheng RQ, Kim SR, et al. Diagnostic accuracy of imaging for liver cirrhosis compared to histologically proven liver cirrhosis. A multicenter collaborative study. Intervirology. 2008;51 Suppl 1():17-26.
137. Wang P, Song D, Han J, et al. Comparing Three Ultrasound-Based Techniques for Diagnosing and Grading Hepatic Steatosis in Metabolic Dysfunction-Associated Steatotic Liver Disease. Acad Radiol. 2025 Apr;32(4):S1076-6332(24)00651-2.
138. Wang K, Zhang J, Wang J, Wang M, Yu Y. Role of multiparametric US in the preoperative assessment of hepatic parenchyma in patients with liver tumors. Abdom Radiol (NY). 2025 Feb;50(2):656-667.
139. Hernando D, Zhao R, Yuan Q, et al. Multicenter Reproducibility of Liver Iron Quantification with 1.5-T and 3.0-T MRI. Radiology. 306(2):e213256, 2023 Feb.
140. Mobini N, Malekzadeh M, Haghighatkhah H, Saligheh Rad H. A hybrid (iron-fat-water) phantom for liver iron overload quantification in the presence of contaminating fat using magnetic resonance imaging. MAGMA. 2020 Jun;33(3):385-392.
141. Jachs M, Hartl L, Simbrunner B, et al. Prognostic performance of non-invasive tests for portal hypertension is comparable to that of hepatic venous pressure gradient. J Hepatol. 2024 May;80(5):S0168-8278(24)00009-6.
142. Jung EM, Dong Y, Jung F. Current aspects of multimodal ultrasound liver diagnostics using contrast-enhanced ultrasonography (CEUS), fat evaluation, fibrosis assessment, and perfusion analysis - An update. Clin Hemorheol Microcirc. 2023;83(2):181-193.
143. Kakegawa T, Sugimoto K, Kuroda H, et al. Diagnostic Accuracy of Two-Dimensional Shear Wave Elastography for Liver Fibrosis: A Multicenter Prospective Study. Clin Gastroenterol Hepatol. 2022 Jun;20(6):S1542-3565(21)00901-0.
144. Kehler T, Grothues D, Evert K, Wahlenmayer J, Knoppke B, Melter M. Elastography-The New Standard in the Assessment of Fibrosis After Pediatric Liver Transplantation?. Pediatr Transplant. 2024 Sep;28(6):e14832.
145. Kim HY, Jeon SK, Ha TY, et al. Development and validation of MRI-PDFF cutoffs for living liver donor eligibility assessment. Liver Transpl. 2025 Mar 01;31(3):333-343.
146. Kobayashi T, Nakatsuka T, Sato M, et al. Diagnostic performance of two-dimensional shear wave elastography and attenuation imaging for fibrosis and steatosis assessment in chronic liver disease. J Med Ultrason (2001). 2025 Jan;52(1):95-103.
147. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015 Aug;149(2):S0016-5085(15)00496-5.
148. Pickhardt PJ, Blake GM, Moeller A, Garrett JW, Summers RM. Post-contrast CT liver attenuation alone is superior to the liver-spleen difference for identifying moderate hepatic steatosis. Eur Radiol. 2024 Nov;34(11):7041-7052.
149. Kramer H, Pickhardt PJ, Kliewer MA, et al. Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy. AJR Am J Roentgenol. 2017 Jan;208(1):92-100.
150. Kumada T, Toyoda H, Yasuda S, et al. Liver Stiffness Measurements by 2D Shear-Wave Elastography: Effect of Steatosis on Fibrosis Evaluation. AJR Am J Roentgenol. 2022 Oct;219(4):604-612.
151. Lin H, Xu X, Deng R, et al. Photon-counting Detector CT for Liver Fat Quantification: Validation across Protocols in Metabolic Dysfunction-associated Steatotic Liver Disease. Radiology. 2024 Sep;312(3):e240038.
152. Mendoza YP, Rodrigues SG, Delgado MG, et al. Inflammatory activity affects the accuracy of liver stiffness measurement by transient elastography but not by two-dimensional shear wave elastography in non-alcoholic fatty liver disease. Liver Int. 2022 Jan;42(1):102-111.
153. Nakamura Y, Hirooka M, Koizumi Y, et al. Diagnostic accuracy of ultrasound-derived fat fraction for the detection and quantification of hepatic steatosis in patients with liver biopsy. J Med Ultrason (2001). 2025 Jan;52(1):85-94.
154. Ning X, Tan S, Peng F, et al. Organ-Specific Iron Overload in Non-Transfusion-Dependent Thalassemia Patients: Insights from Quantitative MRI Evaluation. Eur J Radiol. 2024 Dec;181():S0720-048X(24)00466-2.
155. Pirmoazen AM, Khurana A, El Kaffas A, Kamaya A. Quantitative ultrasound approaches for diagnosis and monitoring hepatic steatosis in nonalcoholic fatty liver disease. Theranostics. 2020;10(9):4277-4289.
156. Qi R, Lu L, He T, Zhang L, Lin Y, Bao L. Comparing ultrasound-derived fat fraction and MRI-PDFF for quantifying hepatic steatosis: a real-world prospective study. Eur Radiol. 2025 May;35(5):2580-2588.
157. Noureddin M, Truong E, Gornbein JA, et al. MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis. J Hepatol. 2022 Apr;76(4):S0168-8278(21)02184-X.
158. Pierce TT, Samir AE. Liver Fibrosis: Point-Ultrasound Elastography Is a Safe, Widely Available, Low-Cost, Noninvasive Biomarker of Liver Fibrosis That Is Suitable for Broad Community Use. AJR Am J Roentgenol. 2022 Sep;219(3):382-383.
159. Poynard T, Pham T, Perazzo H, et al. Real-Time Shear Wave versus Transient Elastography for Predicting Fibrosis: Applicability, and Impact of Inflammation and Steatosis. A Non-Invasive Comparison. PLoS One. 2016;11(10):e0163276.
160. Puttawibul P, Kritsaneepaiboon S, Chotsampancharoen T, Vichitkunakorn P. The relationship between liver stiffness by two-dimensional shear wave elastography and iron overload status in transfusion-dependent patients. Pediatr Hematol Oncol. 2024 Sep;41(6):409-421.
161. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023 May 01;77(5):1797-1835.
162. Tamaki N, Munaganuru N, Jung J, et al. Clinical utility of 30% relative decline in MRI-PDFF in predicting fibrosis regression in non-alcoholic fatty liver disease. Gut. 2022 May;71(5):983-990.
163. Trout AT, Sheridan RM, Serai SD, et al. Diagnostic Performance of MR Elastography for Liver Fibrosis in Children and Young Adults with a Spectrum of Liver Diseases. Radiology. 2018 Jun;287(3):824-832.
164. Truong E, Gornbein JA, Yang JD, et al. MRI-AST (MAST) Score Accurately Predicts Major Adverse Liver Outcome, Hepatocellular Carcinoma, Liver Transplant, and Liver-Related Death. Clin Gastroenterol Hepatol. 2023 Sep;21(10):S1542-3565(23)00111-8.
165. Wei H, Jiang HY, Li M, Zhang T, Song B. Two-dimensional shear wave elastography for significant liver fibrosis in patients with chronic hepatitis B: A systematic review and meta-analysis. Eur J Radiol. 2020 Mar;124():S0720-048X(20)30028-0.
Disclaimer

The ACR Committee on Appropriateness Criteria and its expert panels have developed criteria for determining appropriate imaging examinations for diagnosis and treatment of specified medical condition(s). These criteria are intended to guide radiologists, radiation oncologists and referring physicians in making decisions regarding radiologic imaging and treatment. Generally, the complexity and severity of a patient’s clinical condition should dictate the selection of appropriate imaging procedures or treatments. Only those examinations generally used for evaluation of the patient’s condition are ranked.  Other imaging studies necessary to evaluate other co-existent diseases or other medical consequences of this condition are not considered in this document. The availability of equipment or personnel may influence the selection of appropriate imaging procedures or treatments. Imaging techniques classified as investigational by the FDA have not been considered in developing these criteria; however, study of new equipment and applications should be encouraged. The ultimate decision regarding the appropriateness of any specific radiologic examination or treatment must be made by the referring physician and radiologist in light of all the circumstances presented in an individual examination.