AC Portal
Document Navigator

Management of Liver Cancer

Variant: 1   Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
Procedure Appropriateness Category
Liver transplantation Usually Appropriate
Percutaneous ablation liver Usually Appropriate
Surgical liver resection Usually Appropriate
Combination locoregional therapy May Be Appropriate
External beam radiation therapy May Be Appropriate
Transarterial chemoembolization May Be Appropriate
Transarterial radioembolization May Be Appropriate
Bland transarterial embolization May Be Appropriate
Systemic therapies Usually Not Appropriate

Variant: 2   Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
Procedure Appropriateness Category
Liver transplantation Usually Appropriate
Combination locoregional therapy Usually Appropriate
Surgical liver resection Usually Appropriate
Transarterial chemoembolization Usually Appropriate
Transarterial radioembolization Usually Appropriate
Bland transarterial embolization May Be Appropriate
External beam radiation therapy May Be Appropriate
Percutaneous ablation liver May Be Appropriate
Systemic therapies Usually Not Appropriate

Variant: 3   Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
Procedure Appropriateness Category
Transarterial chemoembolization Usually Appropriate
Transarterial radioembolization Usually Appropriate
Bland transarterial embolization Usually Appropriate
Systemic therapies Usually Appropriate
Combination locoregional therapy May Be Appropriate
External beam radiation therapy May Be Appropriate
Percutaneous ablation liver Usually Not Appropriate
Surgical liver resection Usually Not Appropriate
Liver transplantation Usually Not Appropriate

Variant: 4   Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
Procedure Appropriateness Category
Systemic therapies Usually Appropriate
Transarterial radioembolization Usually Appropriate
Transarterial chemoembolization May Be Appropriate
Bland transarterial embolization May Be Appropriate
Combination locoregional therapy May Be Appropriate
External beam radiation therapy May Be Appropriate
Percutaneous ablation liver Usually Not Appropriate
Surgical liver resection Usually Not Appropriate
Liver transplantation Usually Not Appropriate

Variant: 5   Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
Procedure Appropriateness Category
Surgical liver resection Usually Appropriate
Percutaneous ablation liver Usually Appropriate
Liver transplantation May Be Appropriate
Systemic therapies May Be Appropriate
Transarterial radioembolization May Be Appropriate
External beam radiation therapy May Be Appropriate
Transarterial chemoembolization May Be Appropriate
Bland transarterial embolization Usually Not Appropriate

Variant: 6   Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
Procedure Appropriateness Category
Systemic therapies Usually Appropriate
Transarterial radioembolization May Be Appropriate
External beam radiation therapy May Be Appropriate
Bland transarterial embolization Usually Not Appropriate
Transarterial chemoembolization Usually Not Appropriate
Percutaneous ablation liver Usually Not Appropriate
Surgical liver resection Usually Not Appropriate
Liver transplantation Usually Not Appropriate

Variant: 7   Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
Procedure Appropriateness Category
Long-acting somatostatin analogs Usually Appropriate
Bland transarterial embolization Usually Appropriate
Peptide receptor radionuclide therapy Usually Appropriate
Transarterial chemoembolization Usually Appropriate
Transarterial radioembolization Usually Appropriate
Systemic therapies May Be Appropriate
External beam radiation therapy May Be Appropriate
Percutaneous ablation liver May Be Appropriate
Surgical liver resection May Be Appropriate
Combination locoregional therapy Usually Not Appropriate
Liver transplantation Usually Not Appropriate

Variant: 8   Metastatic liver disease: Solitary colorectal liver metastasis.
Procedure Appropriateness Category
Systemic therapies Usually Appropriate
Surgical liver resection Usually Appropriate
Percutaneous ablation liver Usually Appropriate
Combination locoregional therapy May Be Appropriate
External beam radiation therapy May Be Appropriate
Transarterial chemoembolization May Be Appropriate
Transarterial radioembolization May Be Appropriate
Bland transarterial embolization Usually Not Appropriate
Hepatic arterial chemotherapy infusion Usually Not Appropriate
Liver transplantation Usually Not Appropriate

Variant: 9   Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
Procedure Appropriateness Category
Systemic therapies Usually Appropriate
Hepatic arterial chemotherapy infusion May Be Appropriate
Transarterial chemoembolization May Be Appropriate
Transarterial radioembolization May Be Appropriate
Bland transarterial embolization May Be Appropriate (Disagreement)
Combination locoregional therapy May Be Appropriate
Percutaneous ablation liver May Be Appropriate
Surgical liver resection May Be Appropriate
External beam radiation therapy Usually Not Appropriate
Liver transplantation Usually Not Appropriate

Panel Members
Summary of Literature Review
Introduction/Background
Discussion of Procedures by Variant
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
A. Systemic Therapies
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
B. Surgical Liver Resection
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
C. Liver Transplantation
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
D. Percutaneous Ablation Liver
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
E. External Beam Radiation Therapy
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
F. Bland Transarterial Embolization
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
G. Transarterial Chemoembolization
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
H. Transarterial Radioembolization
Variant 1: Hepatocellular cancer: Solitary tumor less than 3 cm, cirrhotic.
I. Combination Locoregional Therapy
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
A. Systemic Therapies
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
B. Surgical Liver Resection
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
C. Liver Transplantation
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
D. Percutaneous Ablation Liver
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
E. External Beam Radiation Therapy
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
F. Bland Transarterial Embolization
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
G. Transarterial Chemoembolization
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
H. Transarterial Radioembolization
Variant 2: Hepatocellular cancer: Solitary tumor 3 to 5 cm, cirrhotic.
I. Combination Locoregional Therapy
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
A. Systemic Therapies
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
B. Surgical Liver Resection
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
C. Liver Transplantation
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
D. Percutaneous Ablation Liver
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
E. External Beam Radiation Therapy
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
F. Bland Transarterial Embolization
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
G. Transarterial Chemoembolization
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
H. Transarterial Radioembolization
Variant 3: Hepatocellular cancer: Multifocal, bilobar disease, at least 1 tumor greater than 5 cm, cirrhotic.
I. Combination Locoregional Therapy
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
A. Systemic Therapies
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
B. Surgical Liver Resection
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
C. Liver Transplantation
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
D. Percutaneous Ablation Liver
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
E. External Beam Radiation Therapy
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
F. Bland Transarterial Embolization
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
G. Transarterial Chemoembolization
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
H. Transarterial Radioembolization
Variant 4: Hepatocellular cancer: Solitary or multifocal disease with vascular invasion, cirrhotic.
I. Combination Locoregional Therapy
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
A. Systemic Therapies
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
B. Surgical Liver Resection
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
C. Liver Transplantation
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
D. Percutaneous Ablation Liver
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
E. External Beam Radiation Therapy
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
F. Bland Transarterial Embolization
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
G. Transarterial Chemoembolization
Variant 5: Intrahepatic cholangiocarcinoma: Peripheral hepatic lobar cholangiocarcinoma, less than 3 cm; no biliary ductal dilatation, macroscopic vascular invasion, regional lymphadenopathy, or distant metastases.
H. Transarterial Radioembolization
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
A. Systemic Therapies
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
B. Surgical Liver Resection
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
C. Liver Transplantation
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
D. Percutaneous Ablation Liver
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
E. External Beam Radiation Therapy
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
F. Bland Transarterial Embolization
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
G. Transarterial Chemoembolization
Variant 6: Ductal cholangiocarcinoma: Hilar cholangiocarcinoma, greater than 3 cm with poorly defined margins, vascular invasion, and periportal lymphadenopathy.
H. Transarterial Radioembolization
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
A. Long-Acting Somatostatin Analogs
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
B. Systemic Therapies
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
C. Surgical Liver Resection
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
D. Liver Transplantation
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
E. Percutaneous Ablation Liver
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
F. External Beam Radiation Therapy
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
G. Bland Transarterial Embolization
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
H. Transarterial Chemoembolization
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
I. Transarterial Radioembolization
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
J. Combination Locoregional Therapy
Variant 7: Metastatic liver disease: Multifocal metastatic neuroendocrine tumor (includes carcinoid tumors as well as islet cell tumors of the pancreas).
K. Peptide Receptor Radionuclide Therapy
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
A. Systemic Therapies
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
B. Surgical Liver Resection
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
C. Liver Transplantation
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
D. Percutaneous Ablation Liver
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
E. External Beam Radiation Therapy
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
F. Hepatic Arterial Chemotherapy Infusion
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
G. Bland Transarterial Embolization
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
H. Transarterial Chemoembolization
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
I. Transarterial Radioembolization
Variant 8: Metastatic liver disease: Solitary colorectal liver metastasis.
J. Combination Locoregional Therapy
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
A. Systemic Therapies
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
B. Surgical Liver Resection
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
C. Liver Transplantation
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
D. Percutaneous Ablation Liver
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
E. External Beam Radiation Therapy
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
F. Hepatic Arterial Chemotherapy Infusion
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
G. Bland Transarterial Embolization
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
H. Transarterial Chemoembolization
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
I. Transarterial Radioembolization
Variant 9: Metastatic liver disease: Multifocal bilobar colorectal carcinoma (liver dominant or isolated).
J. Combination Locoregional Therapy
Summary of Recommendations
Supporting Documents

The evidence table, literature search, and appendix for this topic are available at https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the final rating round tabulations for each recommendation.

For additional information on the Appropriateness Criteria methodology and other supporting documents, please go to the ACR website at https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria.

Appropriateness Category Names and Definitions

Appropriateness Category Name

Appropriateness Rating

Appropriateness Category Definition

Usually Appropriate

7, 8, or 9

The imaging procedure or treatment is indicated in the specified clinical scenarios at a favorable risk-benefit ratio for patients.

May Be Appropriate

4, 5, or 6

The imaging procedure or treatment may be indicated in the specified clinical scenarios as an alternative to imaging procedures or treatments with a more favorable risk-benefit ratio, or the risk-benefit ratio for patients is equivocal.

May Be Appropriate (Disagreement)

5

The individual ratings are too dispersed from the panel median. The different label provides transparency regarding the panel’s recommendation. “May be appropriate” is the rating category and a rating of 5 is assigned.

Usually Not Appropriate

1, 2, or 3

The imaging procedure or treatment is unlikely to be indicated in the specified clinical scenarios, or the risk-benefit ratio for patients is likely to be unfavorable.

References
1. Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693-699.
2. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999;19:329-38.
3. Toso C, Mentha G, Kneteman NM, Majno P. The place of downstaging for hepatocellular carcinoma. J Hepatol 2010;52:930-6.
4. Teh SH, Christein J, Donohue J, et al. Hepatic resection of hepatocellular carcinoma in patients with cirrhosis: Model of End-Stage Liver Disease (MELD) score predicts perioperative mortality. J Gastrointest Surg 2005;9:1207-15; discussion 15.
5. Yamashita Y, Taketomi A, Itoh S, et al. Longterm favorable results of limited hepatic resections for patients with hepatocellular carcinoma: 20 years of experience. J Am Coll Surg. 2007;205(1):19-26.
6. Sapisochin G, Bruix J. Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches. Nat Rev Gastroenterol Hepatol 2017;14:203-17.
7. Akoad ME, Pomfret EA. Surgical resection and liver transplantation for hepatocellular carcinoma. [Review]. Clin Liver Dis. 19(2):381-99, 2015 May.
8. Taura K, Ikai I, Hatano E, et al. Influence of coexisting cirrhosis on outcomes after partial hepatic resection for hepatocellular carcinoma fulfilling the Milan criteria: an analysis of 293 patients. Surgery 2007;142:685-94.
9. Meloni MF, Chiang J, Laeseke PF, et al. Microwave ablation in primary and secondary liver tumours: technical and clinical approaches. Int J Hyperthermia 2017;33:15-24.
10. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908-943.
11. Jiang L, Liao A, Wen T, Yan L, Li B, Yang J. Living donor liver transplantation or resection for Child-Pugh A hepatocellular carcinoma patients with multiple nodules meeting the Milan criteria. Transpl Int. 27(6):562-9, 2014 Jun.
12. Squires MH 3rd, Hanish SI, Fisher SB, et al. Transplant versus resection for the management of hepatocellular carcinoma meeting Milan Criteria in the MELD exception era at a single institution in a UNOS region with short wait times. J Surg Oncol. 109(6):533-41, 2014 May.
13. Majumdar A, Roccarina D, Thorburn D, Davidson BR, Tsochatzis E, Gurusamy KS. Management of people with early- or very early-stage hepatocellular carcinoma: an attempted network meta-analysis. Cochrane Database Syst Rev 2017;3:CD011650.
14. Orlando A, Leandro G, Olivo M, Andriulli A, Cottone M. Radiofrequency thermal ablation vs. percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials. Am J Gastroenterol. 2009;104(2):514-524.
15. Chen MS, Li JQ, Zheng Y, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg. 2006;243(3):321-328.
16. Feng K, Yan J, Li X, et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol. 2012;57(4):794-802.
17. Fujimori M, Takaki H, Nakatsuka A, et al. Survival with up to 10-year follow-up after combination therapy of chemoembolization and radiofrequency ablation for the treatment of hepatocellular carcinoma: single-center experience. J Vasc Interv Radiol. 2013;24(5):655-666.
18. Huang J, Yan L, Cheng Z, et al. A randomized trial comparing radiofrequency ablation and surgical resection for HCC conforming to the Milan criteria. Ann Surg. 2010;252(6):903-912.
19. Livraghi T, Meloni F, Di Stasi M, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology. 2008;47(1):82-89.
20. Peng ZW, Lin XJ, Zhang YJ, et al. Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study. Radiology. 2012;262(3):1022-1033.
21. Tohme S, Geller DA, Cardinal JS, et al. Radiofrequency ablation compared to resection in early-stage hepatocellular carcinoma. HPB. 15(3):210-7, 2013 Mar.
22. Schaub SK, Hartvigson PE, Lock MI, et al. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: Current Trends and Controversies. Technol Cancer Res Treat 2018;17:1533033818790217.
23. Andolino DL, Johnson CS, Maluccio M, et al. Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2011;81(4):e447-453.
24. Bujold A, Massey CA, Kim JJ, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31(13):1631-1639.
25. Mendez Romero A, Wunderink W, Hussain SM, et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: A single institution phase i-ii study. Acta Oncol 2006;45:831-7.
26. Cardenes HR, Price TR, Perkins SM, et al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol 2010;12:218-25.
27. Eriguchi T, Takeda A, Tateishi Y, et al. Comparison of stereotactic body radiotherapy and radiofrequency ablation for hepatocellular carcinoma: Systematic review and meta-analysis of propensity score studies. Hepatol Res 2021;51:813-22.
28. Pan YX, Fu YZ, Hu DD, et al. Stereotactic Body Radiotherapy vs. Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis. Front Oncol 2020;10:1639.
29. Parikh ND, Marshall VD, Green M, et al. Effectiveness and cost of radiofrequency ablation and stereotactic body radiotherapy for treatment of early-stage hepatocellular carcinoma: An analysis of SEER-medicare. J Med Imaging Radiat Oncol 2018;62:673-81.
30. Rajyaguru DJ, Borgert AJ, Smith AL, et al. Radiofrequency Ablation Versus Stereotactic Body Radiotherapy for Localized Hepatocellular Carcinoma in Nonsurgically Managed Patients: Analysis of the National Cancer Database. J Clin Oncol 2018;36:600-08.
31. Seo YS, Kim MS, Yoo HJ, et al. Radiofrequency ablation versus stereotactic body radiotherapy for small hepatocellular carcinoma: a Markov model-based analysis. Cancer Med 2016;5:3094-101.
32. Lewandowski RJ, Kulik LM, Riaz A, et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant. 2009;9(8):1920-1928.
33. Katz AW, Chawla S, Qu Z, Kashyap R, Milano MT, Hezel AF. Stereotactic hypofractionated radiation therapy as a bridge to transplantation for hepatocellular carcinoma: clinical outcome and pathologic correlation. International journal of radiation oncology, biology, physics 2012;83:895-900.
34. O'Connor JK, Trotter J, Davis GL, Dempster J, Klintmalm GB, Goldstein RM. Long-term outcomes of stereotactic body radiation therapy in the treatment of hepatocellular cancer as a bridge to transplantation. Liver Transpl. 2012;18(8):949-954.
35. Mohamed M, Katz AW, Tejani MA, et al. Comparison of outcomes between SBRT, yttrium-90 radioembolization, transarterial chemoembolization, and radiofrequency ablation as bridge to transplant for hepatocellular carcinoma. Adv Radiat Oncol 2016;1:35-42.
36. Bryce K, Tsochatzis EA. Downstaging for hepatocellular cancer: harm or benefit? Transl Gastroenterol Hepatol 2017;2:106.
37. Zheng XH, Guan YS, Zhou XP, et al. Detection of hypervascular hepatocellular carcinoma: Comparison of multi-detector CT with digital subtraction angiography and Lipiodol CT. World J Gastroenterol 2005;11:200-3.
38. Gandhi S, Iannitti DA, Mayo-Smith WW, Dupuy DE. Technical report: Lipiodol-guided computed tomography for radiofrequency ablation of hepatocellular carcinoma. Clin Radiol 2006;61:888-91.
39. Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138(1):52-64.
40. Mazzaferro V, Sposito C, Bhoori S, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology 2013;57:1826-37.
41. Titano J, Voutsinas N, Kim E. The Role of Radioembolization in Bridging and Downstaging Hepatocellular Carcinoma to Curative Therapy. Semin Nucl Med 2019;49:189-96.
42. Lewandowski RJ, Gabr A, Abouchaleh N, et al. Radiation Segmentectomy: Potential Curative Therapy for Early Hepatocellular Carcinoma. Radiology 2018;287:1050-58.
43. Vouche M, Habib A, Ward TJ, et al. Unresectable solitary hepatocellular carcinoma not amenable to radiofrequency ablation: multicenter radiology-pathology correlation and survival of radiation segmentectomy. Hepatology 2014;60:192-201.
44. Riaz A, Gates VL, Atassi B, et al. Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. International journal of radiation oncology, biology, physics 2011;79:163-71.
45. Gabr A, Abouchaleh N, Ali R, et al. Comparative study of post-transplant outcomes in hepatocellular carcinoma patients treated with chemoembolization or radioembolization. Eur J Radiol. 93:100-106, 2017 Aug.
46. Kulik LM, Atassi B, van Holsbeeck L, et al. Yttrium-90 microspheres (TheraSphere) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol. 2006;94(7):572-586.
47. Salem R, Gabr A, Riaz A, et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology 2018;68:1429-40.
48. Parikh ND, Waljee AK, Singal AG. Downstaging hepatocellular carcinoma: A systematic review and pooled analysis. Liver Transpl 2015;21:1142-52.
49. Bharadwaz A, Bak-Fredslund KP, Villadsen GE, et al. Combination of radiofrequency ablation with transarterial chemoembolization for treatment of hepatocellular carcinoma: experience from a Danish tertiary liver center. Acta Radiol. 57(7):844-51, 2016 Jul.
50. Iezzi R, Pompili M, La Torre MF, et al. Radiofrequency ablation plus drug-eluting beads transcatheter arterial chemoembolization for the treatment of single large hepatocellular carcinoma. Dig Liver Dis. 47(3):242-8, 2015 Mar.
51. Lu Z, Wen F, Guo Q, Liang H, Mao X, Sun H. Radiofrequency ablation plus chemoembolization versus radiofrequency ablation alone for hepatocellular carcinoma: a meta-analysis of randomized-controlled trials. Eur J Gastroenterol Hepatol. 2013;25(2):187-194.
52. Peng ZW, Zhang YJ, Liang HH, Lin XJ, Guo RP, Chen MS. Recurrent hepatocellular carcinoma treated with sequential transcatheter arterial chemoembolization and RF ablation versus RF ablation alone: a prospective randomized trial. Radiology 2012;262:689-700.
53. Sheta E, El-Kalla F, El-Gharib M, et al. Comparison of single-session transarterial chemoembolization combined with microwave ablation or radiofrequency ablation in the treatment of hepatocellular carcinoma: a randomized-controlled study. European journal of gastroenterology & hepatology 2016;28:1198-203.
54. Yao FY, Kerlan RK, Jr., Hirose R, et al. Excellent outcome following down-staging of hepatocellular carcinoma prior to liver transplantation: an intention-to-treat analysis. Hepatology 2008;48:819-27.
55. Yin X, Zhang L, Wang YH, et al. Transcatheter arterial chemoembolization combined with radiofrequency ablation delays tumor progression and prolongs overall survival in patients with intermediate (BCLC B) hepatocellular carcinoma. BMC Cancer 2014;14:849.
56. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 67(1):358-380, 2018 01.
57. Mazzaferro V, Bhoori S, Sposito C, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl 2011;17 Suppl 2:S44-57.
58. Zhang NN, Lu W, Cheng XJ, Liu JY, Zhou YH, Li F. High-powered microwave ablation of larger hepatocellular carcinoma: evaluation of recurrence rate and factors related to recurrence. Clin Radiol 2015;70:1237-43.
59. Medhat E, Abdel Aziz A, Nabeel M, et al. Value of microwave ablation in treatment of large lesions of hepatocellular carcinoma. J Dig Dis 2015;16:456-63.
60. Brown KT, Do RK, Gonen M, et al. Randomized Trial of Hepatic Artery Embolization for Hepatocellular Carcinoma Using Doxorubicin-Eluting Microspheres Compared With Embolization With Microspheres Alone. J Clin Oncol 2016;34:2046-53.
61. Kluger MD, Halazun KJ, Barroso RT, et al. Bland embolization versus chemoembolization of hepatocellular carcinoma before transplantation. Liver Transpl. 2014;20(5):536-543.
62. Maluccio MA, Covey AM, Porat LB, et al. Transcatheter arterial embolization with only particles for the treatment of unresectable hepatocellular carcinoma. J Vasc Interv Radiol. 2008;19(6):862-869.
63. Marelli L, Stigliano R, Triantos C, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30(1):6-25.
64. Dhanasekaran R, Kooby DA, Staley CA, Kauh JS, Khanna V, Kim HS. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocelluar carcinoma (HCC). J Surg Oncol. 2010;101(6):476-480.
65. Huang K, Zhou Q, Wang R, Cheng D, Ma Y. Doxorubicin-eluting Bead versus Conventional Transarterial Chemoembolization for the Treatment of HCC: a Meta-Analysis. J Gastroenterol Hepatol. 2013.
66. Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41-52.
67. Martin R, Geller D, Espat J, et al. Safety and efficacy of trans arterial chemoembolization with drug-eluting beads in hepatocellular cancer: a systematic review. Hepatogastroenterology. 2012;59(113):255-260.
68. Llovet JM, Real MI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734-1739.
69. Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35(5):1164-1171.
70. Doffoel M, Bonnetain F, Bouche O, et al. Multicentre randomised phase III trial comparing Tamoxifen alone or with Transarterial Lipiodol Chemoembolisation for unresectable hepatocellular carcinoma in cirrhotic patients (Federation Francophone de Cancerologie Digestive 9402). Eur J Cancer 2008;44:528-38.
71. Pelletier G, Ducreux M, Gay F, et al. Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. Groupe CHC. J Hepatol 1998;29:129-34.
72. Groupe d'Etude et de Traitement du Carcinome H. A comparison of lipiodol chemoembolization and conservative treatment for unresectable hepatocellular carcinoma. N Engl J Med 1995;332:1256-61.
73. Martin RC, Joshi J, Robbins K, et al. Hepatic intra-arterial injection of drug-eluting bead, irinotecan (DEBIRI) in unresectable colorectal liver metastases refractory to systemic chemotherapy: results of multi-institutional study. Ann Surg Oncol. 2011;18(1):192-198.
74. Cescon M, Cucchetti A, Ravaioli M, Pinna AD. Hepatocellular carcinoma locoregional therapies for patients in the waiting list. Impact on transplantability and recurrence rate. J Hepatol. 2013;58(3):609-618.
75. Chapman WC, Majella Doyle MB, Stuart JE, et al. Outcomes of neoadjuvant transarterial chemoembolization to downstage hepatocellular carcinoma before liver transplantation. Ann Surg. 2008;248(4):617-625.
76. Chua TC, Liauw W, Saxena A, et al. Systematic review of neoadjuvant transarterial chemoembolization for resectable hepatocellular carcinoma. Liver Int. 2010;30(2):166-174.
77. De Giorgio M, Vezzoli S, Cohen E, et al. Prediction of progression-free survival in patients presenting with hepatocellular carcinoma within the Milan criteria. Liver Transpl. 2010;16(4):503-512.
78. Heckman JT, Devera MB, Marsh JW, et al. Bridging locoregional therapy for hepatocellular carcinoma prior to liver transplantation. Ann Surg Oncol. 2008;15(11):3169-3177.
79. Lesurtel M, Mullhaupt B, Pestalozzi BC, Pfammatter T, Clavien PA. Transarterial chemoembolization as a bridge to liver transplantation for hepatocellular carcinoma: an evidence-based analysis. Am J Transplant. 2006;6(11):2644-2650.
80. Maddala YK, Stadheim L, Andrews JC, et al. Drop-out rates of patients with hepatocellular cancer listed for liver transplantation: outcome with chemoembolization. Liver Transpl. 2004;10(3):449-455.
81. Habib A, Desai K, Hickey R, Thornburg B, Lewandowski R, Salem R. Locoregional therapy of hepatocellular carcinoma. [Review]. Clin Liver Dis. 19(2):401-20, 2015 May.
82. Victor DW, 3rd, Monsour HP, Jr., Boktour M, et al. Outcomes of Liver Transplantation for Hepatocellular Carcinoma Beyond the University of California San Francisco Criteria: A Single-center Experience. Transplantation 2020;104:113-21.
83. Xu LF, Sun HL, Chen YT, et al. Large primary hepatocellular carcinoma: transarterial chemoembolization monotherapy versus combined transarterial chemoembolization-percutaneous microwave coagulation therapy. J Gastroenterol Hepatol 2013;28:456-63.
84. Liu C, Liang P, Liu F, et al. MWA combined with TACE as a combined therapy for unresectable large-sized hepotocellular carcinoma. Int J Hyperthermia 2011;27:654-62.
85. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378-390.
86. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The Lancet. Oncology 2009;10:25-34.
87. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020;382:1894-905.
88. Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;389:56-66.
89. Kelley RK, Ryoo BY, Merle P, et al. Second-line cabozantinib after sorafenib treatment for advanced hepatocellular carcinoma: a subgroup analysis of the phase 3 CELESTIAL trial. ESMO Open 2020;5.
90. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. The Lancet. Oncology 2018;19:940-52.
91. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-502.
92. Bova V, Miraglia R, Maruzzelli L, Vizzini GB, Luca A. Predictive factors of downstaging of hepatocellular carcinoma beyond the Milan criteria treated with intra-arterial therapies. Cardiovasc Intervent Radiol 2013;36:433-9.
93. DuBay DA, Sandroussi C, Kachura JR, et al. Radiofrequency ablation of hepatocellular carcinoma as a bridge to liver transplantation. HPB (Oxford). 2011;13(1):24-32.
94. Graziadei IW, Sandmueller H, Waldenberger P, et al. Chemoembolization followed by liver transplantation for hepatocellular carcinoma impedes tumor progression while on the waiting list and leads to excellent outcome. Liver Transpl 2003;9:557-63.
95. Lau WY, Lai EC. The current role of radiofrequency ablation in the management of hepatocellular carcinoma: a systematic review. Ann Surg. 2009;249(1):20-25.
96. Ravaioli M, Grazi GL, Piscaglia F, et al. Liver transplantation for hepatocellular carcinoma: results of down-staging in patients initially outside the Milan selection criteria. Am J Transplant 2008;8:2547-57.
97. Sun PL, Chen CL, Hsu SL, et al. The significance of transarterial embolization for advanced hepatocellular carcinoma in liver transplantation. Transplant Proc 2004;36:2295-6.
98. Baumann BC, Wei J, Plastaras JP, et al. Stereotactic Body Radiation Therapy (SBRT) for Hepatocellular Carcinoma: High Rates of Local Control With Low Toxicity. Am J Clin Oncol 2018;41:1118-24.
99. Jang WI, Bae SH, Kim MS, et al. A phase 2 multicenter study of stereotactic body radiotherapy for hepatocellular carcinoma: Safety and efficacy. Cancer 2020;126:363-72.
100. Miyayama S, Yamashiro M, Ikuno M, Okumura K, Yoshida M. Ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinoma guided by automated tumor-feeders detection software: technical success and short-term tumor response. Abdom Imaging 2014;39:645-56.
101. Miyayama S, Matsui O, Yamashiro M, et al. Ultraselective transcatheter arterial chemoembolization with a 2-f tip microcatheter for small hepatocellular carcinomas: relationship between local tumor recurrence and visualization of the portal vein with iodized oil. J Vasc Interv Radiol 2007;18:365-76.
102. Carr BI, Kondragunta V, Buch SC, Branch RA. Therapeutic equivalence in survival for hepatic arterial chemoembolization and yttrium 90 microsphere treatments in unresectable hepatocellular carcinoma: a two-cohort study. Cancer. 2010;116(5):1305-1314.
103. Kooby DA, Egnatashvili V, Srinivasan S, et al. Comparison of yttrium-90 radioembolization and transcatheter arterial chemoembolization for the treatment of unresectable hepatocellular carcinoma. J Vasc Interv Radiol. 2010;21(2):224-230.
104. Lance C, McLennan G, Obuchowski N, et al. Comparative analysis of the safety and efficacy of transcatheter arterial chemoembolization and yttrium-90 radioembolization in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol. 2011;22(12):1697-1705.
105. Lobo L, Yakoub D, Picado O, et al. Unresectable Hepatocellular Carcinoma: Radioembolization Versus Chemoembolization: A Systematic Review and Meta-analysis. [Review]. Cardiovasc Intervent Radiol. 39(11):1580-1588, 2016 Nov.
106. Moreno-Luna LE, Yang JD, Sanchez W, et al. Efficacy and safety of transarterial radioembolization versus chemoembolization in patients with hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2013;36(3):714-723.
107. Salem R, Lewandowski RJ, Kulik L, et al. Radioembolization results in longer time-to-progression and reduced toxicity compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2011;140(2):497-507 e492.
108. Sangro B, Carpanese L, Cianni R, et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 2011;54:868-78.
109. Gabr A, Kallini JR, Gates VL, et al. Same-day 90Y radioembolization: implementing a new treatment paradigm. Eur J Nucl Med Mol Imaging. 43(13):2353-2359, 2016 Dec.
110. Gates VL, Marshall KG, Salzig K, Williams M, Lewandowski RJ, Salem R. Outpatient single-session yttrium-90 glass microsphere radioembolization. J Vasc Interv Radiol 2014;25:266-70.
111. Zhong JH, Ke Y, Gong WF, et al. Hepatic resection associated with good survival for selected patients with intermediate and advanced-stage hepatocellular carcinoma. Ann Surg 2014;260:329-40.
112. Andreou A, Bahra M, Schmelzle M, et al. Predictive factors for extrahepatic recurrence of hepatocellular carcinoma following liver transplantation. Clin Transplant. 30(7):819-27, 2016 Jul.
113. Finkenstedt A, Vikoler A, Portenkirchner M, et al. Excellent post-transplant survival in patients with intermediate stage hepatocellular carcinoma responding to neoadjuvant therapy. Liver Int 2016;36:688-95.
114. Xue TC, Xie XY, Zhang L, Yin X, Zhang BH, Ren ZG. Transarterial chemoembolization for hepatocellular carcinoma with portal vein tumor thrombus: a meta-analysis. BMC Gastroenterol 2013;13:60.
115. Niu ZJ, Ma YL, Kang P, et al. Transarterial chemoembolization compared with conservative treatment for advanced hepatocellular carcinoma with portal vein tumor thrombus: using a new classification. Med Oncol
116. Luo J, Guo RP, Lai EC, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma with portal vein tumor thrombosis: a prospective comparative study. Ann Surg Oncol 2011;18:413-20.
117. Yoon SM, Ryoo BY, Lee SJ, et al. Efficacy and Safety of Transarterial Chemoembolization Plus External Beam Radiotherapy vs Sorafenib in Hepatocellular Carcinoma With Macroscopic Vascular Invasion: A Randomized Clinical Trial. JAMA Oncol 2018;4:661-69.
118. Valle JW, Furuse J, Jitlal M, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol 2014;25:391-8.
119. Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273-1281.
120. Guro H, Kim JW, Choi Y, Cho JY, Yoon YS, Han HS. Multidisciplinary management of intrahepatic cholangiocarcinoma: Current approaches. [Review]. Surg Oncol. 26(2):146-152, 2017 Jun.
121. Squires MH, Cloyd JM, Dillhoff M, Schmidt C, Pawlik TM. Challenges of surgical management of intrahepatic cholangiocarcinoma. [Review]. Expert rev. gastroenterol. hepatol.. 12(7):671-681, 2018 Jul.
122. Meyer CG, Penn I, James L. Liver transplantation for cholangiocarcinoma: results in 207 patients. Transplantation. 2000;69(8):1633-1637.
123. Kim JH, Won HJ, Shin YM, Kim KA, Kim PN. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. AJR Am J Roentgenol. 2011;196(2):W205-209.
124. Mosconi C, Cappelli A, Ascanio S, et al. Yttrium-90 microsphere radioembolization in unresectable intrahepatic cholangiocarcinoma. Fut Oncol. 13(15):1301-1310, 2017 Jun.
125. Xu HX, Wang Y, Lu MD, Liu LN. Percutaneous ultrasound-guided thermal ablation for intrahepatic cholangiocarcinoma. Br J Radiol. 2012;85(1016):1078-1084.
126. Han K, Ko HK, Kim KW, Won HJ, Shin YM, Kim PN. Radiofrequency ablation in the treatment of unresectable intrahepatic cholangiocarcinoma: systematic review and meta-analysis. J Vasc Interv Radiol 2015;26:943-8.
127. Saxena A, Bester L, Chua TC, Chu FC, Morris DL. Yttrium-90 radiotherapy for unresectable intrahepatic cholangiocarcinoma: a preliminary assessment of this novel treatment option. Ann Surg Oncol. 2010;17(2):484-491.
128. Mansour JC, Aloia TA, Crane CH, Heimbach JK, Nagino M, Vauthey JN. Hilar cholangiocarcinoma: expert consensus statement. HPB. 17(8):691-9, 2015 Aug.HPB. 17(8):691-9, 2015 Aug.
129. Hyder O, Marsh JW, Salem R, et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol 2013;20:3779-86.
130. Ray CE, Jr., Edwards A, Smith MT, et al. Metaanalysis of survival, complications, and imaging response following chemotherapy-based transarterial therapy in patients with unresectable intrahepatic cholangiocarcinoma. J Vasc Interv Radiol 2013;24:1218-26.
131. Jia Z, Paz-Fumagalli R, Frey G, Sella DM, McKinney JM, Wang W. Resin-based Yttrium-90 microspheres for unresectable and failed first-line chemotherapy intrahepatic cholangiocarcinoma: preliminary results. Journal of Cancer Research & Clinical Oncology. 143(3):481-489, 2017 Mar.J Cancer Res Clin Oncol. 143(3):481-489, 2017 Mar.
132. Padia SA. Y90 Clinical Data Update: Cholangiocarcinoma, Neuroendocrine Tumor, Melanoma, and Breast Cancer Metastatic Disease. [Review]. Techniques in Vascular & Interventional Radiology. 22(2):81-86, 2019 Jun.
133. Jia Z, Paz-Fumagalli R, Frey G, Sella DM, McKinney JM, Wang W. Single-institution experience of radioembolization with yttrium-90 microspheres for unresectable metastatic neuroendocrine liver tumors. J Gastroenterol Hepatol. 32(9):1617-1623, 2017 Sep.
134. Rinke A, Wittenberg M, Schade-Brittinger C, et al. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology 2017;104:26-32.
135. Atwell TD, Charboneau JW, Que FG, et al. Treatment of neuroendocrine cancer metastatic to the liver: the role of ablative techniques. Cardiovasc Intervent Radiol. 2005;28(4):409-421.
136. Fazio N, Kulke M, Rosbrook B, Fernandez K, Raymond E. Updated Efficacy and Safety Outcomes for Patients with Well-Differentiated Pancreatic Neuroendocrine Tumors Treated with Sunitinib. Target Oncol 2021;16:27-35.
137. Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2016;387:968-77.
138. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 2011;378:2005-12.
139. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2010;28:69-76.
140. Que FG, Nagorney DM, Batts KP, Linz LJ, Kvols LK. Hepatic resection for metastatic neuroendocrine carcinomas. Am J Surg 1995;169:36-42; discussion 42-3.
141. Sarmiento JM, Heywood G, Rubin J, Ilstrup DM, Nagorney DM, Que FG. Surgical treatment of neuroendocrine metastases to the liver: a plea for resection to increase survival. J Am Coll Surg. 2003;197(1):29-37.
142. Saxena A, Chua TC, Perera M, Chu F, Morris DL. Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review. Surgical oncology 2012;21:e131-41.
143. Boudreaux JP, Wang YZ, Diebold AE, et al. A single institution's experience with surgical cytoreduction of stage IV, well-differentiated, small bowel neuroendocrine tumors. J Am Coll Surg 2014;218:837-44.
144. McEntee GP, Nagorney DM, Kvols LK, Moertel CG, Grant CS. Cytoreductive hepatic surgery for neuroendocrine tumors. Surgery 1990;108:1091-6.
145. Moris D, Tsilimigras DI, Ntanasis-Stathopoulos I, et al. Liver transplantation in patients with liver metastases from neuroendocrine tumors: A systematic review. Surgery 2017;162:525-36.
146. Wahl DR, Stenmark MH, Tao Y, et al. Outcomes After Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma. J Clin Oncol 2016;34:452-9.
147. Hoffe SE, Finkelstein SE, Russell MS, Shridhar R. Nonsurgical options for hepatocellular carcinoma: evolving role of external beam radiotherapy. Cancer control : journal of the Moffitt Cancer Center 2010;17:100-10.
148. Edyta WR, Jakub L, Jerzy W. Whole Liver Palliative Radiotherapy for Patients with Massive Liver Metastases. Asian Pac J Cancer Prev 2015;16:6381-4.
149. Gupta S, Johnson MM, Murthy R, et al. Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer. 2005;104(8):1590-1602.
150. Ruutiainen AT, Soulen MC, Tuite CM, et al. Chemoembolization and bland embolization of neuroendocrine tumor metastases to the liver. J Vasc Interv Radiol. 2007;18(7):847-855.
151. Dong XD, Carr BI. Hepatic artery chemoembolization for the treatment of liver metastases from neuroendocrine tumors: a long-term follow-up in 123 patients. Med Oncol 2011;28 Suppl 1:S286-90.
152. Bhagat N, Reyes DK, Lin M, et al. Phase II study of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury. Cardiovasc Intervent Radiol. 36(2):449-59, 2013 Apr.
153. Fiore F, Del Prete M, Franco R, et al. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors. Endocrine 2014;47:177-82.
154. Devcic Z, Rosenberg J, Braat AJ, et al. The efficacy of hepatic 90Y resin radioembolization for metastatic neuroendocrine tumors: a meta-analysis. J Nucl Med. 55(9):1404-10, 2014 Sep.
155. Pericleous M, Caplin ME, Tsochatzis E, Yu D, Morgan-Rowe L, Toumpanakis C. Hepatic artery embolization in advanced neuroendocrine tumors: Efficacy and long-term outcomes. Asia Pac J Clin Oncol 2016;12:61-9.
156. Fan KY, Wild AT, Halappa VG, et al. Neuroendocrine tumor liver metastases treated with yttrium-90 radioembolization. Contemp Clin Trials. 50:143-9, 2016 09.
157. Guiu B, Deschamps F, Aho S, et al. Liver/biliary injuries following chemoembolisation of endocrine tumours and hepatocellular carcinoma: lipiodol vs. drug-eluting beads. J Hepatol. 2012;56(3):609-617.
158. Chen JX, Rose S, White SB, et al. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival. Cardiovasc Intervent Radiol. 40(1):69-80, 2017 Jan.
159. Tomozawa Y, Jahangiri Y, Pathak P, et al. Long-Term Toxicity after Transarterial Radioembolization with Yttrium-90 Using Resin Microspheres for Neuroendocrine Tumor Liver Metastases. J Vasc Interv Radiol 2018;29:858-65.
160. Filice A, Fraternali A, Frasoldati A, et al. Radiolabeled somatostatin analogues therapy in advanced neuroendocrine tumors: a single centre experience. J Oncol 2012;2012:320198.
161. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 26(13):2124-30, 2008 May 01.
162. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017;376:125-35.
163. Lin PS, Semrad TJ. Molecular Testing for the Treatment of Advanced Colorectal Cancer: An Overview. [Review]. Methods Mol Biol. 1765:281-297, 2018.
164. Sanchez-Gundin J, Fernandez-Carballido AM, Martinez-Valdivieso L, Barreda-Hernandez D, Torres-Suarez AI. New Trends in the Therapeutic Approach to Metastatic Colorectal Cancer. [Review]. Int J Med Sci. 15(7):659-665, 2018.
165. Ducreux M, Adenis A, Pignon JP, et al. Efficacy and safety of bevacizumab-based combination regimens in patients with previously untreated metastatic colorectal cancer: final results from a randomised phase II study of bevacizumab plus 5-fluorouracil, leucovorin plus irinotecan versus bevacizumab plus capecitabine plus irinotecan (FNCLCC ACCORD 13/0503 study). Eur J Cancer 2013;49:1236-45.
166. Fuchs CS, Marshall J, Mitchell E, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin
167. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 2004;22:23-30.
168. Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. The Lancet. Oncology 2015;16:1306-15.
169. Sag AA, Selcukbiricik F, Mandel NM. Evidence-based medical oncology and interventional radiology paradigms for liver-dominant colorectal cancer metastases. [Review]. World J Gastroenterol. 22(11):3127-49, 2016 Mar 21.
170. Wicherts DA, de Haas RJ, Adam R. Bringing unresectable liver disease to resection with curative intent. Eur J Surg Oncol. 2007;33 Suppl 2:S42-51.
171. Guglielmi A, Ruzzenente A, Conci S, Valdegamberi A, Iacono C. How much remnant is enough in liver resection? Dig Surg 2012;29:6-17.
172. Toso C, Pinto Marques H, Andres A, et al. Liver transplantation for colorectal liver metastasis: Survival without recurrence can be achieved. Liver Transpl 2017;23:1073-76.
173. Gillams AR, Lees WR. Radio-frequency ablation of colorectal liver metastases in 167 patients. Eur Radiol 2004;14:2261-7.
174. Khajanchee YS, Hammill CW, Cassera MA, Wolf RF, Hansen PD. Hepatic resection vs minimally invasive radiofrequency ablation for the treatment of colorectal liver metastases: a Markov analysis. Arch Surg. 2011;146(12):1416-1423.
175. Lemke J, Cammerer G, Ganser J, et al. Survival and Prognostic Factors of Colorectal Liver Metastases After Surgical and Nonsurgical Treatment. Clin Colorectal Cancer. 15(4):e183-e192, 2016 12.
176. Shady W, Petre EN, Gonen M, et al. Percutaneous Radiofrequency Ablation of Colorectal Cancer Liver Metastases: Factors Affecting Outcomes--A 10-year Experience at a Single Center. Radiology 2016;278:601-11.
177. Franzese C, Comito T, Clerici E, et al. Liver metastases from colorectal cancer: propensity score-based comparison of stereotactic body radiation therapy vs. microwave ablation. J Cancer Res Clin Oncol. 144(9):1777-1783, 2018 Sep.
178. Ceelen W, Praet M, Villeirs G, et al. Initial experience with the use of preoperative transarterial chemoembolization in the treatment of liver metastasis. Acta Chir Belg 1996;96:37-40.
179. Yamakado K, Inaba Y, Sato Y, et al. Radiofrequency Ablation Combined with Hepatic Arterial Chemoembolization Using Degradable Starch Microsphere Mixed with Mitomycin C for the Treatment of Liver Metastasis from Colorectal Cancer: A Prospective Multicenter Study. Cardiovasc Intervent Radiol. 40(4):560-567, 2017 Apr.
180. Folprecht G, Gruenberger T, Bechstein W, et al. Survival of patients with initially unresectable colorectal liver metastases treated with FOLFOX/cetuximab or FOLFIRI/cetuximab in a multidisciplinary concept (CELIM study). Ann Oncol. 25(5):1018-25, 2014 May.
181. Ruers T, Van Coevorden F, Punt CJ, et al. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. J Natl Cancer Inst 2017;109.
182. Chang DT, Swaminath A, Kozak M, et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer 2011;117:4060-9.
183. Lim A, Le Sourd S, Senellart H, et al. Hepatic Arterial Infusion Chemotherapy for Unresectable Liver Metastases of Colorectal Cancer: A Multicenter Retrospective Study. Clin Colorectal Cancer 2017;16:308-15.
184. Guo JH, Zhang HY, Gao S, et al. Hepatic artery infusion with raltitrexed or 5-fluorouracil for colorectal cancer liver metastasis. World J Gastroenterol 2017;23:1406-11.
185. D'Angelica MI, Correa-Gallego C, Paty PB, et al. Phase II trial of hepatic artery infusional and systemic chemotherapy for patients with unresectable hepatic metastases from colorectal cancer: conversion to resection and long-term outcomes. Ann Surg 2015;261:353-60.
186. Chan DL, Alzahrani NA, Morris DL, Chua TC. Systematic review and meta-analysis of hepatic arterial infusion chemotherapy as bridging therapy for colorectal liver metastases. [Review]. Surg Oncol. 24(3):162-71, 2015 Sep.
187. Arai Y, Ohtsu A, Sato Y, et al. Phase I/II study of radiologic hepatic arterial infusion of fluorouracil plus systemic irinotecan for unresectable hepatic metastases from colorectal cancer: Japan Clinical Oncology Group Trial 0208-DI. J Vasc Interv Radiol 2012;23:1261-7.
188. Richardson AJ, Laurence JM, Lam VW. Transarterial chemoembolization with irinotecan beads in the treatment of colorectal liver metastases: systematic review. J Vasc Interv Radiol 2013;24:1209-17.
189. Albert M, Kiefer MV, Sun W, et al. Chemoembolization of colorectal liver metastases with cisplatin, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol. Cancer. 2011;117(2):343-352.
190. Wasan HS, Gibbs P, Sharma NK, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 18(9):1159-1171, 2017 09.
191. van Hazel GA, Heinemann V, Sharma NK, et al. SIRFLOX: Randomized Phase III Trial Comparing First-Line mFOLFOX6 (Plus or Minus Bevacizumab) Versus mFOLFOX6 (Plus or Minus Bevacizumab) Plus Selective Internal Radiation Therapy in Patients With Metastatic Colorectal Cancer. J Clin Oncol. 34(15):1723-31, 2016 05 20.
192. Gibbs P, Heinemann V, Sharma NK, et al. Effect of Primary Tumor Side on Survival Outcomes in Untreated Patients With Metastatic Colorectal Cancer When Selective Internal Radiation Therapy Is Added to Chemotherapy: Combined Analysis of Two Randomized Controlled Studies. Clin Colorectal Cancer. 17(4):e617-e629, 2018 12.
193. Seidensticker R, Denecke T, Kraus P, et al. Matched-pair comparison of radioembolization plus best supportive care versus best supportive care alone for chemotherapy refractory liver-dominant colorectal metastases. Cardiovasc Intervent Radiol 2012;35:1066-73.
194. Cosimelli M, Golfieri R, Cagol PP, et al. Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases. Br J Cancer 2010;103:324-31.
Disclaimer

The ACR Committee on Appropriateness Criteria and its expert panels have developed criteria for determining appropriate imaging examinations for diagnosis and treatment of specified medical condition(s). These criteria are intended to guide radiologists, radiation oncologists and referring physicians in making decisions regarding radiologic imaging and treatment. Generally, the complexity and severity of a patient’s clinical condition should dictate the selection of appropriate imaging procedures or treatments. Only those examinations generally used for evaluation of the patient’s condition are ranked.  Other imaging studies necessary to evaluate other co-existent diseases or other medical consequences of this condition are not considered in this document. The availability of equipment or personnel may influence the selection of appropriate imaging procedures or treatments. Imaging techniques classified as investigational by the FDA have not been considered in developing these criteria; however, study of new equipment and applications should be encouraged. The ultimate decision regarding the appropriateness of any specific radiologic examination or treatment must be made by the referring physician and radiologist in light of all the circumstances presented in an individual examination.