Variant: 1 Clinically suspected mediastinal mass. Initial imaging.
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Procedure Appropriateness Category Relative Radiation Level
Radiography chest Usually Appropriate @
MRI chest without and with IV contrast Usually Appropriate o
MRI chest without IV contrast Usually Appropriate o
CT chest with IV contrast Usually Appropriate SISIS)
CT chest without IV contrast Usually Appropriate SISIS)
US chest Usually Not Appropriate O
Image-guided transthoracic needle biopsy Usually Not Appropriate Varies
CT chest without and with IV contrast Usually Not Appropriate SISIS)
FDG-PET/CT skull base to mid-thigh Usually Not Appropriate SISIBIS)

Variant: 2

Indeterminate mediastinal mass on radiography. Next imaging study.

Procedure Appropriateness Category Relative Radiation Level
MRI chest without and with IV contrast Usually Appropriate 6]
MRI chest without IV contrast Usually Appropriate 0o
CT chest with IV contrast Usually Appropriate SISIS)
CT chest without IV contrast Usually Appropriate SISIS)
US chest Usually Not Appropriate O
Image-guided transthoracic needle biopsy Usually Not Appropriate Varies
CT chest without and with IV contrast Usually Not Appropriate SISIS)
FDG-PET/CT skull base to mid-thigh Usually Not Appropriate SISIBIS)

Variant: 3 Indeterminate mediastinal mass on CT. Next imaging study.

Procedure Appropriateness Category Relative Radiation Level
MRI chest without and with IV contrast Usually Appropriate 0o
MRI chest without IV contrast Usually Appropriate O
Image-guided transthoracic needle biopsy May Be Appropriate Varies
FDG-PET/CT skull base to mid-thigh May Be Appropriate SISIBIS)
US chest Usually Not Appropriate O
Radiography chest Usually Not Appropriate @

Variant: 4 Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.

Procedure Appropriateness Category Relative Radiation Level
Image-guided transthoracic needle biopsy Usually Appropriate Varies
MRI chest without and with IV contrast Usually Appropriate O
MRI chest without IV contrast Usually Appropriate O
CT chest with IV contrast May Be Appropriate QADEE
US chest Usually Not Appropriate O




Radiography chest

Usually Not Appropriate

®

CT chest without and with IV contrast

Usually Not Appropriate

®O®

CT chest without IV contrast

Usually Not Appropriate

®OG®

Variant: 5 Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.

Procedure Appropriateness Category Relative Radiation Level
Image-guided transthoracic needle biopsy Usually Appropriate Varies
MRI chest without and with IV contrast Usually Appropriate O
MRI chest without IV contrast May Be Appropriate O
CT chest with IV contrast May Be Appropriate SISIS)
CT chest without IV contrast May Be Appropriate DEE
FDG-PET/CT skull base to mid-thigh May Be Appropriate SISISID)
US chest Usually Not Appropriate O
Radiography chest Usually Not Appropriate @
CT chest without and with IV contrast Usually Not Appropriate GAEE
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Summary of Literature Review

Introduction/Background

Although the true prevalence of mediastinal masses is not known, a 0.9% prevalence of anterior or
prevascular mediastinal masses was found among the 2,571 chest CTs of the 51% female cohort of
the Framingham Heart Study, with a mean age of 59 years [1]. A 0.73% prevalence of prevascular
mediastinal nodules was found on the chest CTs of a 63% male cohort (n = 56,358 participants),
with a mean age of 52 years undergoing baseline low-dose chest CT for routine health surveillance
[2]. A higher 4% prevalence of mediastinal masses was found on 589 CT pulmonary angiograms in
a 63% female cohort with a mean age of 53 years [3]. On baseline lung cancer screening in the
Early Lung Cancer Action Project, a 0.77% mediastinal mass prevalence was found in a cohort of

9,263 patients that was 51% female and had a median age of 65 years [4].

Although many mediastinal nodules or masses may present as incidental findings on chest
radiographs and cross-sectional imaging, others present with symptoms, signs, and syndromes
that include chest pain, cough, dyspnea, dysphagia, cardiac tamponade, diaphragmatic paralysis,
central venous thrombosis, superior vena cava syndrome, B symptoms in the setting of lymphoma,
myasthenia gravis, and other paraneoplastic syndromes. Other mediastinal masses present during
staging and treatment of a known malignancy, including metastatic spread of disease to the
mediastinum, rebound thymic hyperplasia, and acquired thymic cysts. Mediastinal lesions are also
detected on lung cancer screening CTs [4] and during screening by cross-sectional imaging for
patients with genetic mutations predisposing toward mediastinal masses, such as the succinate




dehydrogenase subunits B and D mutations for paragangliomas [5,6] and the anti-N-methyl D-
aspartate receptor antibody for teratomas [7]. Because mediastinal masses are so varied, not only
in terms of benignity and malignancy but also in terms of their behavior, a general statement
regarding their clinical course and treatment cannot be made.

Localization of a mediastinal mass to 1 of the 3 mediastinal compartments by chest radiography
and cross-sectional imaging can narrow the differential diagnosis [8,9]. Cross-sectional imaging, by
its very nature, can more definitively localize a lesion to a mediastinal compartment—hence the
more recently prescribed use of cross-sectional imaging, rather than chest radiography, for
definition of mediastinal compartments [10] and the use of new descriptive terms for the 3
mediastinal compartments—prevascular, visceral, and paravertebral—in lieu of anterior, middle,
and posterior. A recently published international multi-institutional study confirmed the most
common prevascular mediastinal lesions to be thymomas (28%), benign cysts (20%), and
lymphomas (16%). Benign cysts were most common in the visceral compartment, and neurogenic
tumors were most common in the paravertebral compartment [11].

The classic imaging approach to mediastinal mass evaluation found on radiography has generally
entailed a step-wise progression from chest radiography to CT [12-15] to diagnostic intervention
when needed [16,17], with or without an intervening PET/CT. However, more recent recognition of
the long-literature-supported ability of MRI to characterize tissue and add diagnostic specificity
[18-23], prevent unnecessary biopsy and surgery [24-26], and modify and guide the approach to
biopsy and surgery [27] has moved MRI into a valued position in terms of workup and triage of
these lesions [28-33].

Special Imaging Considerations

For indeterminate hypervascular mediastinal masses on CT and MRI in typical locations for
paraganglioma, Ga-68-DOTATATE has the potential to make a specific diagnosis [34]; however,
such additional testing may not be necessary if surgery is planned, regardless of histopathology.
The role of Ga-68-DOTATATE PET/CT in the clinical management of thymic epithelial tumors (TETs)
and the differentiation of neuroendocrine from non-neuroendocrine tumors needs further
clarification, as somatostatin receptors are present in normal thymus and most TETs [35-37]. If
ectopic thyroid tissue is a diagnostic consideration for an indeterminate prevascular or visceral
mediastinal mass, Tc-99m pertechnetate or I-123 scintigraphy can be performed and can yield a
specific diagnosis, although [-123 scintigraphy may be preferable because of its higher uptake in
thyroid tissue and less background activity [38]. If extramedullary hematopoiesis is a diagnostic
consideration for a paravertebral mass or multiple paravertebral masses, then Tc-99m sulfur colloid
scintigraphy can be performed and can yield a specific diagnosis [39]. Imaging of parathyroid
adenomas will be covered in a separate ACR Appropriateness Criteria® topic on "Parathyroid
Adenoma” and therefore will not be discussed here.

Initial Imaging Definition

Initial imaging is defined as imaging at the beginning of the care episode for the medical condition
defined by the variant. More than one procedure can be considered usually appropriate in the
initial imaging evaluation when:

« There are procedures that are equivalent alternatives (i.e., only one procedure will be ordered



to provide the clinical information to effectively manage the patient’s care)
OR

» There are complementary procedures (i.e., more than one procedure is ordered as a set or
simultaneously wherein each procedure provides unique clinical information to effectively
manage the patient’s care).

Discussion of Procedures by Variant

Variant 1: Clinically suspected mediastinal mass. Initial imaging.

Variant 1: Clinically suspected mediastinal mass. Initial imaging.
A. CT chest

Cross-sectional imaging can more definitively localize a lesion to a mediastinal compartment than
chest radiography. Further tissue characterization of mediastinal masses beyond chest radiography
is achievable by CT which can demonstrate and distinguish not only calcium and macroscopic fat
but also water attenuation fluid, permitting noninvasive diagnosis of many mature teratomas [40].
Pre- and postcontrast conventional CT or dual-energy CT can show enhancing cellular components
of lesions [41,42]; however, the soft-tissue contrast of CT is sometimes insufficient. For example,
benign hyperattenuating thymic cysts on CT can be misinterpreted as thymomas, leading to
unnecessary thymectomy [24]. Not infrequently, a mediastinal lesion is indeterminate by CT and
requires further workup.

CT is superior to chest radiography for detection of invasion of the mass across tissue planes,
secondary to its higher contrast resolution. Invasion of adjacent large blood vessels and the chest
wall is important to identify, as it is associated with a higher probability of incomplete surgical
resection of primary malignant mediastinal masses [43]. In addition, it can direct surgery when still
planned and, in other cases, direct toward other forms of clinical management, including
neoadjuvant chemotherapy and radiation therapy. As a supplement to static assessment of tissue
plane transgression, which can be difficult, dynamic CT [44] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures
and confirm or exclude adherence of the mass to adjacent structures; however, dynamic MRI
during free-breathing can accomplish the same task [45-48]. MRI remains superior to CT for
detection of invasion of the mass across tissue planes, including the chest wall and diaphragm, and
involvement of neurovascular structures, secondary to its higher soft-tissue contrast [49-52].

Variant 1: Clinically suspected mediastinal mass. Initial imaging.
B. FDG-PET/CT Skull Base to Mid-Thigh

Fluorine-18-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT offers limited additional value beyond that
of conventional CT in the initial assessment of mediastinal masses [53], with the exception of its
use for primary mediastinal lymphoma staging and surveillance and detection of metastatic
lymphadenopathy, the latter of which is not within the scope of this topic. With regard to
prevascular mediastinal masses, a negative FDG-PET/CT has been shown to be helpful in excluding
malignancy; however, a positive FDG-PET/CT has little value for discrimination between benign and
malignant lesions [53]. The frequent FDG-PET/CT avidity of normal and hyperplastic thymus [54] is
a confounder in FDG-PET/CT assessment of the prevascular mediastinum. Benign thymic cysts can



also be FDG-PET/CT-avid [42]. Combined use of FDG-PET/CT and dynamic contrast-enhanced
(DCE) MRI has been shown to be helpful to distinguish prevascular mediastinal solid tumors from
one another [55]. Higher standardized uptake values (SUVs) on FDG-PET/CT are more frequently
found in high-risk thymoma, thymic carcinoma, and lymphoma than in low-risk thymoma [55-57].

Variant 1: Clinically suspected mediastinal mass. Initial imaging.
C. CMRI Chest

MRI allows further tissue characterization of mediastinal masses beyond that of CT [21] and FDG-
PET/CT because of its ability to detect not only serous fluid and macroscopic fat [58,59] but also
hemorrhagic and proteinaceous fluid [19,24], microscopic or intravoxel fat [22,60,61], cartilage
[62,63], smooth muscle [64,65], and fibrous material [66-68], albeit not calcium. MRI can prove the
cystic nature of an indeterminate, non-water attenuation thymic mass on CT, preventing
unnecessary biopsy and thymectomy [20,21,24,69]. The ability of MRI to distinguish cystic from
solid lesions definitively carries diagnostic importance in all compartments of the mediastinum.
MRI can also show sites of restricted diffusion of water within lesions by employing diffusion-
weighted imaging (DWI), further assisting in lesion characterization [70,71], and it can employ DCE
and postprocessed subtraction imaging for both further differentiation of lesions [55,72] and
direction of biopsy toward areas of cellularity as opposed to hemorrhagic necrosis, the latter of
which can be hyperattenuating and mimic solid tissue on CT. MRI is more useful than CT for
evaluation of neurogenic tumors, because of its better depiction of neural and spinal involvement
[73] and can be helpful in distinguishing schwannomas, neurofibromas, and ganglioneuromas [74-
77], all of which may appear similar on CT. Because of its ability to detect microscopic fat, MRI can
distinguish normal and hyperplastic thymus from thymic tumors and lymphoma, whether by
chemical-shift MRI in adults [22,61] or by DWI with apparent diffusion coefficient (ADC) mapping
[78,79], the latter with potential to make this distinction in all age groups. MRI can also help
differentiate low-risk from high-risk thymomas, thymic carcinoma, and lymphoma by the DCE
pattern of these lesions [72] and by DWI [71]. CT currently cannot achieve this degree of tissue
characterization.

Cross-sectional imaging by MRI remains superior to CT for detection of invasion of the mass across
tissue planes, including the chest wall and diaphragm, and involvement of neurovascular
structures, secondary to its higher soft-tissue contrast [48-52]. As a supplement to static
assessment of tissue plane transgression, dynamic MRI [45-48] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures,
confirm or exclude adherence of the mass to adjacent structures, and observe diaphragmatic
motion in real time [80-84]; paradoxical motion or lack of motion can indicate phrenic nerve
involvement by the mediastinal mass, without the need to perform a subsequent fluoroscopic sniff
test.

Variant 1: Clinically suspected mediastinal mass. Initial imaging.
D. Radiography Chest

When there is a clinically suspected mediastinal mass, it is reasonable to perform a chest
radiograph as an initial imaging step. Chest radiography can help localize a mass to a specific
mediastinal compartment and thereby narrow the differential diagnosis [85-88]. It can also show
any associated pleural, lung, and bone findings to some extent. Chest radiography offers limited
assistance regarding tissue characterization of mediastinal masses, with the exception of its
occasional demonstration of calcium within a lesion.

Variant 1: Clinically suspected mediastinal mass. Initial imaging.



E. US Chest

There is little relevant literature to support the use of ultrasound (US) in the initial evaluation of a
clinically suspected mediastinal mass. Because of the limited transthoracic sonographic window, US
would not be useful to screen for a clinically suspected mediastinal mass. Transthoracic US can be
used to evaluate mediastinal masses, when accessible to the sonographic window, delineating their
size, location, cystic versus solid nature, relationship to important vascular structures, and
vascularity, with some diagnostic potential [89]. Endoscopic US can similarly evaluate mediastinal
masses when encompassed in the sonographic window [90]. The tissue characterization capability
of US is inferior to MRI but not to CT.

Variant 1: Clinically suspected mediastinal mass. Initial imaging.
F. Image-Guided Transthoracic Needle Biopsy

Image-guided transthoracic needle biopsy is not a form of initial imaging.

Variant 2: Indeterminate mediastinal mass on radiography. Next imaging study.

Variant 2: Indeterminate mediastinal mass on radiography. Next imaging study.
A. CT chest

Cross-sectional imaging, by its very nature, can more definitively localize a lesion to a mediastinal
compartment than chest radiography. Further tissue characterization of mediastinal masses
beyond chest radiography is achievable by CT, which can demonstrate and distinguish not only
calcium and macroscopic fat but also water attenuation fluid, thus permitting noninvasive
diagnosis of many mature teratomas [40]. Pre- and postcontrast conventional CT or dual-energy
CT can show enhancing, cellular components of lesions [41,42]; however, the soft-tissue contrast of
CT is sometimes insufficient. For example, benign hyperattenuating thymic cysts on CT can be
misinterpreted as thymomas, leading to unnecessary thymectomy [24]. Not infrequently, a
mediastinal lesion is indeterminate by CT and requires further workup.

CT is superior to chest radiography for detection of invasion of the mass across tissue planes,
secondary to its higher contrast resolution. Invasion of adjacent large blood vessels and the chest
wall is important to identify, as it is associated with a higher probability of incomplete surgical
resection of primary malignant mediastinal masses [43]. In addition, it can direct surgery when still
planned, and in other cases, direct toward other forms of clinical management, including
neoadjuvant chemotherapy and radiation therapy. As a supplement to static assessment of tissue
plane transgression, which can be difficult, dynamic CT [44] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures
and to confirm or exclude adherence of the mass to adjacent structures; however, dynamic MRI
during free-breathing can accomplish the same task [45-48]. MRI remains superior to CT for
detection of invasion of the mass across tissue planes, including the chest wall and diaphragm, and
involvement of neurovascular structures, secondary to its higher soft-tissue contrast [49-52].

Variant 2: Indeterminate mediastinal mass on radiography. Next imaging study.
B. FDG-PET/CT Skull Base to Mid-Thigh

FDG-PET/CT offers limited additional value beyond that of conventional CT in the assessment of
mediastinal masses [53], with the exception of its use for primary mediastinal lymphoma staging
and surveillance and detection of metastatic lymphadenopathy, the latter of which is not within the
scope of this topic. FDG-PET/CT has become the standard for staging and assessment of treatment
response for lymphomas that are FDG-PET-avid at baseline or at the time recurrence [91-97]. A



caveat is that although a negative surveillance FDG-PET/CT is reassuring of a good outcome, a
positive FDG-PET/CT can be misleading, as it does not always implicate residual or recurrent
lymphoma [96,98]. CT and MRI can be used for surveillance of lymphadenopathy when the
metabolic activity of the lymphadenopathy is not of interest and when allowed within a clinical
protocol. With regard to prevascular mediastinal masses, a negative FDG-PET/CT has been shown
to be helpful in excluding malignancy; however, a positive FDG-PET/CT has little value for
discrimination between benign and malignant lesions [53]. The frequent FDG-PET/CT avidity of
normal and hyperplastic thymus [54] is a confounder in FDG-PET/CT assessment of the prevascular
mediastinum. Benign thymic cysts can also be FDG-PET/CT-avid [42]. Combined use of FDG-
PET/CT and DCE MRI has been shown to be helpful to distinguish prevascular mediastinal solid
tumors from one another [55]. Higher SUVs on FDG-PET/CT are more frequently found in high-risk
thymoma, thymic carcinoma, and lymphoma than in low-risk thymoma [55-57]. FDG-PET/CT
appears to be more sensitive than CT alone for detection of mediastinal recurrence of thymoma
[99].

Variant 2: Indeterminate mediastinal mass on radiography. Next imaging study.
C. MRI Chest

MRI allows further tissue characterization of mediastinal masses beyond that of CT [21] and FDG-
PET/CT because of its ability to detect not only serous fluid and macroscopic fat [58,59] but also
hemorrhagic and proteinaceous fluid [19,24], microscopic or intravoxel fat [22,60,61], cartilage
[62,63], smooth muscle [64,65], and fibrous material [66-68], albeit not calcium. MRI can prove the
cystic nature of an indeterminate, non-water attenuation thymic mass on CT, preventing
unnecessary biopsy and thymectomy [20,21,24,69]. The ability of MRI to distinguish cystic from
solid lesions definitively carries diagnostic importance in all compartments of the mediastinum.
MRI can also show sites of restricted diffusion of water within lesions by employing DWI, further
assisting in lesion characterization [70,71] and can employ DCE and postprocessed subtraction
imaging for further differentiation of lesions [55,72] and for direction of biopsy toward areas of
cellularity, as opposed to hemorrhagic necrosis, the latter of which can be hyperattenuating and
mimic solid tissue on CT. MRl is more useful than CT for evaluation of neurogenic tumors, because
of its better depiction of neural and spinal involvement [73], and it can be helpful in distinguishing
schwannomas, neurofibromas, and ganglioneuromas [74-77], all of which may appear similar on
CT. Because of its ability to detect microscopic fat, MRI can distinguish normal and hyperplastic
thymus from thymic tumors and lymphoma, whether by chemical-shift MRI in adults [22,61] or by
DWI with ADC mapping [78,79], the latter with potential to make this distinction in all age groups.
MRI can also help differentiate low-risk from high-risk thymomas, thymic carcinoma, and
lymphoma by the DCE pattern of these lesions [72] and by DWI [71]. CT currently cannot achieve
this degree of tissue characterization. MRI has been shown to be slightly superior to CT for
surveillance of treated TETs, although, if there is insurmountable susceptibility artifact from
sternotomy wires using fast spin-echo and other MRI techniques, alternating MRI and CT follow-up
can be performed [100].

Cross-sectional imaging by MRI remains superior to CT for detection of invasion of the mass across
tissue planes, including the chest wall and diaphragm, and involvement of neurovascular
structures, secondary to its higher soft-tissue contrast [48-52]. As a supplement to static
assessment of tissue plane transgression, dynamic MRI [45-48] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures,
confirm or exclude adherence of the mass to adjacent structures, and observe diaphragmatic
motion in real time [80-84]; paradoxical motion or lack of motion can indicate phrenic nerve



involvement by the mediastinal mass, without the need to perform a subsequent fluoroscopic sniff
test.

Variant 2: Indeterminate mediastinal mass on radiography. Next imaging study.
D. US Chest

Unless a mediastinal mass found on chest radiography is deemed fully accessible by transthoracic
US, there is little relevant literature to support its use as the next step. Transthoracic US can be
used to evaluate mediastinal masses, when accessible to the sonographic window, delineating their
size, location, cystic versus solid nature, relationship to important vascular structures, and
vascularity, with some diagnostic potential [89]. Endoscopic US can similarly evaluate mediastinal
masses when encompassed in the sonographic window [90]. The tissue characterization capability
of US is inferior to MRI but not to CT.

Variant 2: Indeterminate mediastinal mass on radiography. Next imaging study.
E. Image-guided transthoracic needle biopsy

Image-guided transthoracic needle biopsy would seldom be performed without a preceding cross-
sectional imaging study.

Variant 3: Indeterminate mediastinal mass on CT. Next imaging study.

Variant 3: Indeterminate mediastinal mass on CT. Next imaging study.
A. FDG-PET/CT skull base to mid-thigh

FDG-PET/CT offers limited additional value beyond that of conventional CT in the assessment of
mediastinal masses [53], with the exception of its use for primary mediastinal lymphoma staging
and surveillance and detection of metastatic lymphadenopathy, the latter of which is not within the
scope of this topic. FDG-PET/CT has become the standard for staging and assessment of treatment
response for lymphomas that are FDG-PET-avid at baseline or at the time recurrence [91-97]. A
caveat is that although a negative surveillance FDG-PET/CT is reassuring of a good outcome, a
positive FDG-PET/CT can be misleading, as it does not always implicate residual or recurrent
lymphoma [96,98]. CT and MRI can be used for surveillance of lymphadenopathy, when the
metabolic activity of the lymphadenopathy is not of interest and when allowed within a clinical
protocol. With regard to prevascular mediastinal masses, a negative FDG-PET/CT has been shown
to be helpful in excluding malignancy; however, a positive FDG-PET/CT has little value for
discrimination between benign and malignant lesions [53]. The frequent FDG-PET/CT avidity of
normal and hyperplastic thymus [54] is a confounder in FDG-PET/CT assessment of the prevascular
mediastinum. Benign thymic cysts can also be FDG-PET/CT-avid [42]. Combined use of FDG-
PET/CT and DCE MRI has been shown to be helpful to distinguish prevascular mediastinal solid
tumors from one another [55]. Higher SUVs on FDG-PET/CT are more frequently found in high-risk
thymoma, thymic carcinoma, and lymphoma than in low-risk thymoma [55-57]. FDG-PET/CT
appears to be more sensitive than CT alone for detection of mediastinal recurrence of thymoma
[99].

Variant 3: Indeterminate mediastinal mass on CT. Next imaging study.
B. MRI Chest

MRI allows further tissue characterization of mediastinal masses beyond that of CT [21] and FDG-
PET/CT because of its ability to detect not only serous fluid and macroscopic fat [58,59] but also
hemorrhagic and proteinaceous fluid [19,24], microscopic or intravoxel fat [22,60,61], cartilage
[62,63], smooth muscle [64,65], and fibrous material [66-68], albeit not calcium. MRI can prove the
cystic nature of an indeterminate, non-water attenuation thymic mass on CT, preventing



unnecessary biopsy and thymectomy [20,21,24,69]. The ability of MRI to distinguish cystic from
solid lesions definitively carries diagnostic importance in all compartments of the mediastinum.
MRI can also show sites of restricted diffusion of water within lesions by employing DWI, further
assisting in lesion characterization [70,71], and can employ DCE and postprocessed subtraction
imaging for further differentiation of lesions [55,72] and for direction of biopsy toward areas of
cellularity, as opposed to hemorrhagic necrosis, the latter of which can be hyperattenuating and
mimic solid tissue on CT. MRI is more useful than CT for evaluation of neurogenic tumors, because
of its better depiction of neural and spinal involvement [73], and can be helpful in distinguishing
schwannomas, neurofibromas, and ganglioneuromas [74-77], all of which may appear similar on
CT. Because of its ability to detect microscopic fat, MRI can distinguish normal and hyperplastic
thymus from thymic tumors and lymphoma, whether by chemical-shift MRI in adults [22,61] or by
DWI with ADC mapping [78,79], the latter with potential to make this distinction in all age groups.
MRI can also help differentiate low-risk from high-risk thymomas, thymic carcinoma, and
lymphoma by the DCE pattern of these lesions [72] and by DWI [71]. CT currently cannot achieve
this degree of tissue characterization. MRI has been shown to be slightly superior to CT for
surveillance of treated TETs, although, if there is insurmountable susceptibility artifact from
sternotomy wires using fast spin-echo and other MRI techniques, alternating MRI and CT follow-up
can be performed [100].

Cross-sectional imaging by MRI remains superior to CT for detection of invasion of the mass across
tissue planes, including the chest wall and diaphragm, and involvement of neurovascular
structures, secondary to its higher soft-tissue contrast [48-52]. As a supplement to static
assessment of tissue plane transgression, dynamic MRI [45-48] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures,
confirm or exclude adherence of the mass to adjacent structures, and observe diaphragmatic
motion in real time [80-84]; paradoxical motion or lack of motion can indicate phrenic nerve
involvement by the mediastinal mass, without the need to perform a subsequent fluoroscopic sniff
test.

Variant 3: Indeterminate mediastinal mass on CT. Next imaging study.
C. US Chest

There is little relevant literature to support US of an indeterminate mediastinal mass on CT.
Transthoracic US can be used to evaluate mediastinal masses when accessible to the sonographic
window, delineating their size, location, cystic versus solid nature, relationship to important
vascular structures, and vascularity, with some diagnostic potential [89]. Endoscopic US can
similarly evaluate mediastinal masses when encompassed in the sonographic window [90]. The
tissue characterization capability of US is inferior to MRI but not to CT.

Variant 3: Indeterminate mediastinal mass on CT. Next imaging study.
D. Image-Guided Transthoracic Needle Biopsy

CT-guided percutaneous needle and core biopsy of accessible mediastinal masses has been shown
to be safe and to have a good diagnostic yield, with core biopsy more effective than fine-needle
aspiration. Biopsy was more frequently diagnostic for TETs than for lymphoma [101-104]. A
retrospective study of 293 consecutive CT-guided mediastinal biopsies performed in 285 patients
showed an overall diagnostic yield of 87% for mediastinal masses with a mean size of 5.3 cm and
57% for residual masses at the site of treated lymphoma [101]. Another retrospective study of 52
patients reported a 77% diagnostic yield for needle biopsy of mediastinal masses with a mean size
of 6.9 cm [102]. When the distinction of TETs from lymphoma cannot be definitively made by
imaging, image-guided biopsy has a role. PET/CT guidance for biopsy reportedly yields no



diagnostic advantage [104]. When the lesion is visible within the sonographic window,
transthoracic US-guided biopsy of mediastinal masses is also feasible, with color Doppler and
contrast-enhanced sonographic techniques providing additional value [105-108] and with core
biopsy more effective than fine-needle aspiration. Endoscopic biopsy of mediastinal masses is also
feasible and effective, although not in the purview of this topic [109]. DWI MR may be helpful in
directing CT-guided biopsy toward sites of higher cellularity and diagnostic yield [110], as may DCE
MRI with postprocessed subtraction. MR-guided percutaneous needle biopsy has also been shown
to be safe and diagnostically accurate [111].

Variant 3: Indeterminate mediastinal mass on CT. Next imaging study.
E. Radiography chest

After cross-sectional imaging has been performed for mediastinal mass evaluation, there is seldom
a role for chest radiography.

Variant 4: Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.

Variant 4: Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.
A. CT chest

After FDG-PET/CT has been performed for mediastinal mass evaluation, there is seldom a role for
chest CT.

Variant 4: Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.
B. MRI Chest

MRI allows further tissue characterization of mediastinal masses beyond that of CT [21] and FDG-
PET/CT because of its ability to detect not only serous fluid and macroscopic fat [58,59] but also
hemorrhagic and proteinaceous fluid [19,24], microscopic or intravoxel fat [22,60,61], cartilage
[62,63], smooth muscle [64,65], and fibrous material [66-68], albeit not calcium. MRI can prove the
cystic nature of an indeterminate, non—-water attenuation thymic mass on CT, preventing
unnecessary biopsy and thymectomy [20,21,24,69]. The ability of MRI to distinguish cystic from
solid lesions definitively carries diagnostic importance in all compartments of the mediastinum.
MRI can also show sites of restricted diffusion of water within lesions by employing DWI, further
assisting in lesion characterization [70,71], and can employ DCE and postprocessed subtraction
imaging for further differentiation of lesions [55,72] and for direction of biopsy toward areas of
cellularity, as opposed to hemorrhagic necrosis, the latter of which can be hyperattenuating and
mimic solid tissue on CT. MRI is more useful than CT for evaluation of neurogenic tumors, because
of its better depiction of neural and spinal involvement [73], and it can be helpful in distinguishing
schwannomas, neurofibromas, and ganglioneuromas [74-77], all of which may appear similar on
CT. Because of its ability to detect microscopic fat, MRI can distinguish normal and hyperplastic
thymus from thymic tumors and lymphoma, whether by chemical-shift MRI in adults [22,61] or by
DWI with ADC mapping [78,79], the latter with potential to make this distinction in all age groups.
MRI can also help differentiate low-risk from high-risk thymomas, thymic carcinoma, and
lymphoma by the DCE pattern of these lesions [72] and by DWI [71]. CT currently cannot achieve
this degree of tissue characterization. MRI has been shown to be slightly superior to CT for
surveillance of treated TETSs, although if there is insurmountable susceptibility artifact from
sternotomy wires using fast spin-echo and other MRI techniques, alternating MRI and CT follow-up
can be performed [100].

Cross-sectional imaging by MRI remains superior to CT for detection of invasion of the mass across



tissue planes, including the chest wall and diaphragm, and involvement of neurovascular
structures, secondary to its higher soft-tissue contrast [48-52]. As a supplement to static
assessment of tissue plane transgression, dynamic MRI [45-48] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures,
confirm or exclude adherence of the mass to adjacent structures, and observe diaphragmatic
motion in real time [80-84]; paradoxical motion or lack of motion can indicate phrenic nerve
involvement by the mediastinal mass, without the need to perform a subsequent fluoroscopic sniff
test.

Variant 4: Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.
C. US Chest

There is little relevant literature to support US of an indeterminate mediastinal mass on FDG-
PET/CT. Transthoracic US can be used to evaluate mediastinal masses when accessible to the
sonographic window, delineating their size, location, cystic versus solid nature, relationship to
important vascular structures, and vascularity, with some diagnostic potential [89]. Endoscopic US
can similarly evaluate mediastinal masses when encompassed in the sonographic window [90]. The
tissue characterization capability of US is inferior to MRI but not to CT.

Variant 4: Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.
D. Image-guided transthoracic needle biopsy

CT-guided percutaneous needle and core biopsy of accessible mediastinal masses has been shown
to be safe and to have a good diagnostic yield, with core biopsy more effective than fine-needle
aspiration. Biopsy was more frequently diagnostic for TETs than for lymphoma [101-104]. A
retrospective study of 293 consecutive CT-guided mediastinal biopsies performed in 285 patients
showed an overall diagnostic yield of 87% for mediastinal masses with a mean size of 5.3 cm and
57% for residual masses at the site of treated lymphoma [101]. Another retrospective study of 52
patients reported a 77% diagnostic yield for needle biopsy of mediastinal masses with a mean size
of 6.9 cm [102]. When the distinction of TETs from lymphoma cannot be definitively made by
imaging, image-guided biopsy has a role. PET/CT guidance for biopsy reportedly yields no
diagnostic advantage [104]. When the lesion is visible within the sonographic window,
transthoracic US-guided biopsy of mediastinal masses is also feasible, with color Doppler and
contrast-enhanced sonographic techniques providing additional value [105-108], and with core
biopsy more effective than fine-needle aspiration. Endoscopic biopsy of mediastinal masses is also
feasible and effective, although not in the purview of this topic [109]. DWI MR may be helpful in
directing CT-guided biopsy toward sites of higher cellularity and diagnostic yield [110], as may DCE
MRI with postprocessed subtraction. MR-guided percutaneous needle biopsy has also been shown
to be safe and diagnostically accurate [111].

Variant 4: Indeterminate mediastinal mass on FDG-PET/CT. Next imaging study.

E. Radiography Chest

After cross-sectional imaging has been performed for mediastinal mass evaluation, there is seldom
a role for chest radiography.

Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.
Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.

A. CT chest

Unless there is concern for missed calcification within a mediastinal mass and any diagnostic utility
such a finding may have, CT would be unlikely to add additional diagnostic information regarding



a mediastinal mass beyond that offered by MRI. CT can be used as a means of follow-up of
indeterminate mediastinal masses, readily showing any change in size, morphology, or attenuation
of the lesion. However, surveillance by CT would be less likely to provide the level of diagnostic
certainty that MR could provide at follow-up on account of MR'’s greater sensitivity for detection of
increased lesion complexity and its greater capacity to characterize tissue. Surveillance could be
performed at a 3-, 6-, or 12-month interval over 2 or more years, depending upon the level of
clinical concern.

Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.
B. FDG-PET/CT Skull Base to Mid-Thigh

Unless the degree of metabolic activity of a mediastinal mass is sought and deemed capable of
changing clinical management, FDG-PET/CT would be unlikely to add diagnostic information
regarding a mediastinal mass beyond that offered by MRI. FDG-PET/CT offers limited additional
value beyond that of conventional CT and MRI in the assessment of mediastinal masses [53], with
the exception of its use for primary mediastinal lymphoma staging and surveillance and detection
of metastatic lymphadenopathy, the latter of which is not within the scope of this topic. FDG-
PET/CT has become the standard for staging and assessment of treatment response for
lymphomas that are FDG-PET-avid at baseline or at the time recurrence [91-97]. A caveat is that
although a negative surveillance FDG-PET/CT is reassuring of a good outcome, a positive FDG-
PET/CT can be misleading, as it does not always implicate residual or recurrent lymphoma [96,98].
With regard to prevascular mediastinal masses, a negative FDG-PET/CT has been shown to be
helpful in excluding malignancy; however, a positive FDG-PET/CT has little value for discrimination
between benign and malignant lesions [53]. The frequent FDG-PET/CT avidity of normal and
hyperplastic thymus [54] is a confounder in FDG-PET/CT assessment of the prevascular
mediastinum. Benign thymic cysts can also be FDG-PET/CT-avid [42]. Combined use of FDG-
PET/CT and DCE MRI has been shown to be helpful to distinguish prevascular mediastinal solid
tumors from one another [55]. Higher SUVs on FDG-PET/CT are more frequently found in high-risk
thymoma, thymic carcinoma, and lymphoma than in low-risk thymoma [55-57]. FDG-PET/CT
appears to be more sensitive than CT alone for detection of mediastinal recurrence of thymoma
[99].

Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.
C. MRI Chest

Sometimes a mediastinal mass is found and incompletely evaluated on a pulmonary MR
angiography or a neck, breast, abdominal, spine, or chest wall MRI and more dedicated chest MR
evaluation is needed. When a mediastinal mass is indeterminate on MRI after more comprehensive
evaluation, a short-term follow-up chest MRI can be performed, rather than proceeding to biopsy
or resection, at a 3-, 6-, or 12-month interval over 2 or more years, depending upon the level of
clinical concern. MRI can not only provide information about any interval change in size or
morphology, which CT can accomplish but can also provide additional detail regarding lesion
complexity and tissue characterization beyond that of CT [21] and FDG-PET/CT. This added value is
due to its ability to detect not only serous fluid and macroscopic fat [58,59] but also hemorrhagic
and proteinaceous fluid [19,24], microscopic or intravoxel fat [22,60,61], cartilage [62,63], smooth
muscle [64,65], and fibrous material [66-68], albeit not calcium. MRI can prove the cystic nature of
an indeterminate, non-water attenuation thymic mass on CT, preventing unnecessary biopsy and
thymectomy [20,21,24,69]. The ability of MRI to distinguish cystic from solid lesions definitively
carries diagnostic importance in all compartments of the mediastinum. MRI can also show sites of
restricted diffusion of water within lesions by employing DWI, further assisting in lesion



characterization [70,71], and can employ DCE and postprocessed subtraction imaging for further
differentiation of lesions [55,72] and for direction of biopsy toward areas of cellularity, as opposed
to hemorrhagic necrosis, the latter of which can be hyperattenuating and mimic solid tissue on CT.
MRI is more useful than CT for evaluation of neurogenic tumors, because of its better depiction of
neural and spinal involvement [73], and can be helpful in distinguishing schwannomas,
neurofibromas, and ganglioneuromas [74-77], all of which may appear similar on CT. Because of its
ability to detect microscopic fat, MRI can distinguish normal and hyperplastic thymus from thymic
tumors and lymphoma, whether by chemical-shift MRI in adults [22,61] or by DWI with ADC
mapping [78,79], the latter with potential to make this distinction in all age groups. MRI can also
help differentiate low-risk from high-risk thymomas, thymic carcinoma, and lymphoma by the DCE
pattern of these lesions [72] and by DWI [71]. CT currently cannot achieve this degree of tissue
characterization. MRI has been shown to be slightly superior to CT for surveillance of treated TETs,
although if there is insurmountable susceptibility artifact from sternotomy wires despite use of fast
spin-echo and other MRI techniques, alternating MRI and CT follow-up can be performed [100].

Cross-sectional imaging by MRI remains superior to CT for detection of invasion of the mass across
tissue planes, including the chest wall and diaphragm, and involvement of neurovascular
structures, secondary to its higher soft-tissue contrast [48-52]. As a supplement to static
assessment of tissue plane transgression, dynamic MRI [45-48] during free-breathing or cinematic
cardiac gating can be performed to assess movement of the mass relative to adjacent structures,
to confirm or exclude adherence of the mass to adjacent structures, and to observe diaphragmatic
motion in real time [80-84]; paradoxical motion or lack of motion can indicate phrenic nerve
involvement by the mediastinal mass, without the need to perform a subsequent fluoroscopic sniff
test.

Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.
D. US Chest

Transthoracic US is unlikely to offer additional information regarding mediastinal mass
characterization beyond that of MRI.

Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.
E. Image-guided transthoracic needle biopsy

CT-guided percutaneous needle and core biopsy of accessible mediastinal masses has been shown
to be safe and to have a good diagnostic yield, with core biopsy more effective than fine-needle
aspiration. Biopsy was more frequently diagnostic for TETs than for lymphoma [101-104]. A
retrospective study of 293 consecutive CT-guided mediastinal biopsies performed in 285 patients
showed an overall diagnostic yield of 87% for mediastinal masses with a mean size of 5.3 cm and
57% for residual masses at the site of treated lymphoma [101]. Another retrospective study of 52
patients reported a 77% diagnostic yield for needle biopsy of mediastinal masses with a mean size
of 6.9 cm [102]. When the distinction of TETs from lymphoma cannot be definitively made by
imaging, image-guided biopsy has a role. PET/CT guidance for biopsy reportedly yields no
diagnostic advantage [104]. When the lesion is visible within the sonographic window,
transthoracic US-guided biopsy of mediastinal masses is also feasible, with color Doppler and
contrast-enhanced sonographic techniques providing additional value [105-108], and with core
biopsy more effective than fine-needle aspiration. Endoscopic biopsy of mediastinal masses is also
feasible and effective, although not in the purview of this topic [109]. DWI MR may be helpful in
directing CT-guided biopsy toward sites of higher cellularity and diagnostic yield [110], as may DCE
MRI with postprocessed subtraction. MR-guided percutaneous needle biopsy has also been shown



to be safe and diagnostically accurate [111].

Variant 5: Indeterminate mediastinal mass on MRI. Next imaging study or surveillance.
F. Radiography Chest

After cross-sectional imaging has been performed for mediastinal mass evaluation, there is a
seldom a role for chest radiography.

Summary of Highlights

+ Variant 1: Radiography chest or MRI chest without and with intravenous (V) contrast or MR
chest without IV contrast or CT chest without IV contrast or CT chest with IV contrast or CT
chest without IV contrast is usually appropriate for the initial imaging of patients with
clinically suspected mediastinal mass. These procedures are equivalent alternatives (ie, only
one procedure will be ordered to provide the clinical information to effectively manage the
patient’s care).

 Variant 2: MRI chest without and with IV contrast or MRI chest without IV contrast or CT
chest with IV contrast or CT chest without IV contrast is usually appropriate for the next
imaging study of patients with indeterminate mediastinal mass on radiography. These
procedures are equivalent alternatives (ie, only one procedure will be ordered to provide the
clinical information to effectively manage the patient’s care).

» Variant 3: MRI chest without and with IV contrast or MRI chest without IV contrast is usually
appropriate for the next imaging study of patients with indeterminate mediastinal mass on
CT. These procedures are equivalent alternatives (ie, only one procedure will be ordered to
provide the clinical information to effectively manage the patient’s care).

 Variant 4: Image-guided transthoracic needle biopsy or MRI chest without and with IV
contrast or MRI chest without IV contrast is usually appropriate for the next imaging study of
patients with indeterminate mediastinal mass on FDG-PET/CT. These procedures are
equivalent alternatives (ie, only one procedure will be ordered to provide the clinical
information to effectively manage the patient’s care).

+ Variant 5: Image-guided transthoracic needle biopsy or MRI chest without and with IV
contrast is usually appropriate for the next imaging study or surveillance of patients with
indeterminate mediastinal mass on MRI. These procedures are equivalent alternatives (ie,
only one procedure will be ordered to provide the clinical information to effectively manage
the patient’s care).

Supporting Documents

The evidence table, literature search, and appendix for this topic are available at
https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the
final rating round tabulations for each recommendation.

For additional information on the Appropriateness Criteria methodology and other supporting
documents, please go to the ACR website at https://www.acr.org/Clinical-Resources/Clinical-Tools-
and-Reference/Appropriateness-Criteria.

Appropriateness Category Names and Definitions

Appropriateness  [Appropriateness Appropriateness Category Definition



https://acsearch.acr.org/list
https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria
https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria

Category Name Rating

The imaging procedure or treatment is indicated in
Usually Appropriate 7,8,0r9 the specified clinical scenarios at a favorable risk-
benefit ratio for patients.

The imaging procedure or treatment may be
indicated in the specified clinical scenarios as an

May Be Appropriate 4,5, 0r6 alternative to imaging procedures or treatments with
a more favorable risk-benefit ratio, or the risk-benefit
ratio for patients is equivocal.

The individual ratings are too dispersed from the
panel median. The different label provides

5 transparency regarding the panel’s recommendation.
“May be appropriate” is the rating category and a
rating of 5 is assigned.

May Be Appropriate
(Disagreement)

The imaging procedure or treatment is unlikely to be
indicated in the specified clinical scenarios, or the
risk-benefit ratio for patients is likely to be
unfavorable.

Usually Not Appropriate 1,2,0r3

Relative Radiation Level Information

Potential adverse health effects associated with radiation exposure are an important factor to consider
when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures
associated with different diagnostic procedures, a relative radiation level (RRL) indication has been
included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose
guantity that is used to estimate population total radiation risk associated with an imaging procedure.
Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ
sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation
exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as
compared with those specified for adults (see Table below). Additional information regarding radiation
dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation
Dose Assessment Introduction document.

Relative Radiation Level Designations

. . L. Adult Effective Dose Estimate Pediatric Effective Dose
Relative Radiation Level* .
Range Estimate Range
(0] 0 mSv 0 mSv
@ <0.1 mSv <0.03 mSv
SIS 0.1-1 mSv 0.03-0.3 mSv

@®® 1-10 mSv 0.3-3 mSv
@D EE @ 10-30 mSv 3-10 mSv
@D EEEDE 30-100 mSv 10-30 mSv

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in
these procedures vary as a function of a number of factors (e.g., region of the body exposed to ionizing
radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”
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