
 
American College of Radiology 
ACR Appropriateness Criteria®

Dyspnea-Suspected Cardiac Origin (Ischemia Already Excluded)

 
Variant: 1   Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.

Procedure Appropriateness Category Relative Radiation Level

US echocardiography transthoracic resting Usually Appropriate O

Radiography chest Usually Appropriate ☢

US echocardiography transesophageal May Be Appropriate O

US echocardiography transthoracic stress May Be Appropriate O

MRI heart function and morphology without and with IV contrast May Be Appropriate O

MRI heart function and morphology without IV contrast May Be Appropriate O

CT heart function and morphology with IV contrast May Be Appropriate ☢☢☢☢

Arteriography coronary with ventriculography Usually Not Appropriate ☢☢☢

MRI heart function with stress without and with IV contrast Usually Not Appropriate O

MRI heart function with stress without IV contrast Usually Not Appropriate O

CT coronary calcium Usually Not Appropriate ☢☢☢

CTA coronary arteries with IV contrast Usually Not Appropriate ☢☢☢

FDG-PET/CT heart Usually Not Appropriate ☢☢☢☢

Rb-82 PET/CT MPI rest and stress Usually Not Appropriate ☢☢☢☢

SPECT or SPECT/CT MPI rest and stress Usually Not Appropriate ☢☢☢☢

 
Variant: 2   Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.

Procedure Appropriateness Category Relative Radiation Level

US echocardiography transthoracic resting Usually Appropriate O

MRI heart function and morphology without and with IV contrast Usually Appropriate O

US echocardiography transesophageal May Be Appropriate O

Radiography chest May Be Appropriate (Disagreement) ☢

MRI heart function and morphology without IV contrast May Be Appropriate O

CT heart function and morphology with IV contrast May Be Appropriate ☢☢☢☢

FDG-PET/CT heart May Be Appropriate ☢☢☢☢

US echocardiography transthoracic stress Usually Not Appropriate O

Arteriography coronary with ventriculography Usually Not Appropriate ☢☢☢

MRI heart function with stress without and with IV contrast Usually Not Appropriate O

MRI heart function with stress without IV contrast Usually Not Appropriate O

CT coronary calcium Usually Not Appropriate ☢☢☢

CTA coronary arteries with IV contrast Usually Not Appropriate ☢☢☢

Rb-82 PET/CT MPI rest and stress Usually Not Appropriate ☢☢☢☢

SPECT or SPECT/CT MPI rest and stress Usually Not Appropriate ☢☢☢☢

 
Variant: 3   Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.

Procedure Appropriateness Category Relative Radiation Level

New 2021



US echocardiography transthoracic resting Usually Appropriate O

Radiography chest Usually Appropriate ☢

MRI heart function and morphology without and with IV contrast Usually Appropriate O

CT heart function and morphology with IV contrast Usually Appropriate ☢☢☢☢

US echocardiography transesophageal May Be Appropriate O

MRI heart function and morphology without IV contrast May Be Appropriate O

CT chest with IV contrast May Be Appropriate ☢☢☢

CT chest without IV contrast May Be Appropriate ☢☢☢

CTA chest with IV contrast May Be Appropriate ☢☢☢

FDG-PET/CT heart May Be Appropriate (Disagreement) ☢☢☢☢

US echocardiography transthoracic stress Usually Not Appropriate O

Arteriography coronary with ventriculography Usually Not Appropriate ☢☢☢

MRI heart function with stress without and with IV contrast Usually Not Appropriate O

MRI heart function with stress without IV contrast Usually Not Appropriate O

CT chest without and with IV contrast Usually Not Appropriate ☢☢☢

CT coronary calcium Usually Not Appropriate ☢☢☢

CTA coronary arteries with IV contrast Usually Not Appropriate ☢☢☢

Rb-82 PET/CT MPI rest and stress Usually Not Appropriate ☢☢☢☢

SPECT or SPECT/CT MPI rest and stress Usually Not Appropriate ☢☢☢☢
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Summary of Literature Review
 
Introduction/Background
Dyspnea is the symptom of perceived breathing discomfort, with varied mechanisms and 
associated sensations [1]. Dyspnea is a complex symptom, with contributions from physiologic, 
psychological, and environmental factors [2]. Dyspnea is frequently encountered in primary care, 
accounting for up to 2.5% of family physician visits and 8.4% of emergency department visits [3]. In 
a systematic review of longitudinal studies, dyspnea showed utility in prediction of mortality and 
suggested the presence of underlying disease, most commonly pulmonary and/or cardiovascular 
[4]. Common cardiac causes include myocardial disease, namely, ischemic and nonischemic 
myocardial disease (see the ACR Appropriateness Criteria® topics on "Nonischemic Myocardial 
Disease with Clinical Manifestations (Ischemic Cardiomyopathy Already Excluded)” [5] and 
"Suspected New-Onset and Known Nonacute Heart Failure”[6]), valvular heart disease (VHD), 
arrhythmia, and pericardial pathology [2]. Patient history indications that may suggest a cardiac 
etiology include dyspnea on exertion, or even at rest in severe scenarios abnormalities, as well as 
orthopnea, paroxysmal nocturnal dyspnea, and edema. 

https://acsearch.acr.org/docs/3082580/Narrative/
https://acsearch.acr.org/docs/3082580/Narrative/
https://acsearch.acr.org/docs/3102383/Narrative/


 
Typical treatment goals include identification of the causative disease process to facilitate therapy, 
recovery, and improvement of dyspnea symptoms. Initial diagnostic evaluation is centered about 
careful history taking and physical examination [1]. Physical examination findings in cardiac causes 
of dyspnea could include murmurs (eg, systolic murmurs in the setting of valve insufficiency) as 
well as an abnormality in heart rate or rhythm, extra heart sounds (S3 in setting of ventricular 
dysfunction, pericardial knock associated with constriction), or jugular vein distention and edema 
in heart failure. A nuanced accounting of relevant physical examination findings and history is 
beyond the scope of this document. Diagnostic investigation may be supplemented by chest 
radiography and electrocardiography (ECG) as well as laboratory testing. However, identifying the 
cause of dyspnea in some cases remains elusive [7], and advanced diagnostic imaging may play a 
critical role in the care of these patients.

 
Special Imaging Considerations
MRI imaging artifacts in patients with implanted electronic devices [8-11] and arrhythmias [12-14] 
can be mitigated with use of evolving imaging techniques. 
 
Point-of-care scanning with pocket echocardiography has improved time to definitive treatment 
(83 versus 180 days) and has been associated with improved outcomes, 15% versus 28% 
hospitalization or death, in a prospective randomized trial involving 253 patients in resource 
limited areas [15], whereas point-of-care echocardiography scanning with standard equipment 
obviated the need for formal scans in community patients with asymptomatic murmurs [16], with 
100% of abnormalities identified on a point-of-care scan in 175 patients. 
 
Point-of-care ultrasound (US) is an emerging approach to diagnostic assessment of 
undifferentiated dyspnea, with varying imaging protocols and findings of efficacy. A meta-analysis 
of 7 studies, including 1,861 patients with undifferentiated dyspnea, found that B-lines identified 
on bedside lung US had a pooled sensitivity of 83% (95% confidence interval [CI], 66%–92%), and 
specificity of 84% (95% CI, 72%–91%) in diagnosis of heart failure [17]. Point-of-care US was shown 
to be faster than typical clinical evaluation and was more sensitive for diagnosis of heart failure, 
whereas standard clinical evaluation provided similar accuracy in diagnosis of acute coronary 
syndrome, pneumonia, pleural effusion, pneumothorax, and dyspnea due to other cause, and 
better accuracy than US in diagnosis of chronic obstructive pulmonary disease/asthma and 
pulmonary embolism [18]. 
 
For the purposes of distinguishing between CT and CT angiography (CTA), ACR Appropriateness 
Criteria topics use the definition in the ACR–NASCI–SIR–SPR Practice Parameter for the 
Performance and Interpretation of Body Computed Tomography Angiography (CTA) [19]: 
 

"CTA uses a thin-section CT acquisition that is timed to coincide with peak arterial or venous 
enhancement. The resultant volumetric dataset is interpreted using primary transverse 

reconstructions as well as multiplanar reformations and 3-D renderings.” 
 

All elements are essential: 1) timing, 2) reconstructions/reformats, and 3) 3-D renderings. Standard 
CTs with contrast also include timing issues and reconstructions/reformats. Only in CTA, however, 
is 3-D rendering a required element. This corresponds to the definitions that the CMS has applied 
to the Current Procedural Terminology codes.

https://www.acr.org/-/media/ACR/Files/Practice-Parameters/body-cta.pdf?la=en
https://www.acr.org/-/media/ACR/Files/Practice-Parameters/body-cta.pdf?la=en
https://www.acr.org/-/media/ACR/Files/Practice-Parameters/body-cta.pdf?la=en


 
Initial Imaging Definition
Initial imaging is defined as imaging at the beginning of the care episode for the medical condition 
defined by the variant. More than one procedure can be considered usually appropriate in the 
initial imaging evaluation when:

There are procedures that are equivalent alternatives (i.e., only one procedure will be ordered 
to provide the clinical information to effectively manage the patient’s care)

•

OR

There are complementary procedures (i.e., more than one procedure is ordered as a set or 
simultaneously wherein each procedure provides unique clinical information to effectively 
manage the patient’s care).

•

 
Discussion of Procedures by Variant
Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
A. Arteriography Coronary with Ventriculography
There is no relevant literature to support the use of arteriography coronary with ventriculography 
for the evaluation of dyspnea due to suspected VHD, ischemia excluded.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
B. CT Coronary Calcium
There is scant literature regarding the use of CT coronary calcium scans in the evaluation of 
dyspnea due to suspected VHD, ischemia excluded. Presence of mitral annular calcification on CT 
coronary calcium scans has shown correlation with cardiovascular risk [20]. Coronary artery calcium 
scanning for the detection and quantification of aortic valve calcium burden may be useful in some 
instances, for example, in patients with low-gradient aortic stenosis, but is not a first-line imaging 
examination.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
C. CT Heart Function and Morphology
CT plays a predominantly supportive role to echocardiography in the assessment of suspected 
VHD, utilized when echocardiographic images are suboptimal, or to provide complementary 
information [21]. CT can aid in differentiating aortic leaflet morphologies, with leaflet fusion length, 
uneven cusp area, and midline calcification all showing strong association with bicuspid valve (P < 
.05) [22], with the valve type characterized on surface echocardiography often (20%) reclassified 
after tomographic imaging with MRI, CT, or transesophageal echocardiography (TEE) [23]. CT may 
provide additional insight in the setting of suspected mechanical prosthetic valve dysfunction [24] 
and can also provide precise concomitant anatomic delineation of the entire aorta. 
 



CT is increasingly utilized as part of a comprehensive preprocedural preparation for VHD 
interventions. CT imaging of cardiac and vascular structures plays a critical role in the planning of 
transcatheter aortic valve replacement [25], and up to 30.9% and 32.6% of those with suspect 
clinical and echocardiographic findings posttranscatheter aortic valve replacement or surgical 
aortic valve repair, respectively [26]. 
 
CT imaging is increasingly utilized in planning transcatheter interventions for valvular and 
structural heart disease beyond the aortic valve [27-29] as well as planning, risk stratification, and 
follow-up of surgical interventions for VHD [26]. 
 
Epicardial fat as assessed on CT has shown correlation with mitral annular and aortic leaflet 
calcification [30], although this is not routinely employed in clinical practice.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
D. CTA Coronary Arteries
There is no relevant literature to support the use of CTA coronary arteries for the evaluation of 
dyspnea due to suspected VHD, ischemia excluded. Coronary ostia heights relative to aortic 
annulus are assessed on CTA as part of transcatheter aortic valve planning [25].

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
E. FDG-PET/CT Heart
There is no relevant literature to support the use of fluorine-18-2-fluoro-2-deoxy-D-glucose (FDG)-
PET/CT heart for the evaluation of dyspnea due to suspected VHD, ischemia excluded.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
F. MRI Heart Function and Morphology
MRI plays a complementary role to echocardiography in the assessment of suspected VHD. MRI 
may be utilized when echocardiographic images are suboptimal or to provide additional 
quantitative flow information with use of phase-contrast velocity encoded sequences. MRI offers 
multiplanar capacity in demonstration of leaflet morphology and motion and is less dependent 
upon patient anatomy than echocardiography. However, MRI requires multiple cardiac cycles for 
data collection, and imaging may be compromised in cases of arrhythmia, whereas 
echocardiography offers real-time valve morphologic assessment and is more mobile. MRI often 
shows lower peak velocities than Doppler US; however, mean flow is more accurately analyzed with 
phase-contrast techniques that account for variation in flow across a vessel diameter. MRI may be 
preferred over echocardiography in the assessment of the pulmonary valve and can be used to 
grade mitral, pulmonic, or aortic regurgitation if there is clinical uncertainty after echocardiography 
[21]. The assessment of regurgitant volume, left ventricular (LV) volume, and myocardial fibrosis 
may play an eventual role in risk prognosis in VHD. MRI quantified aortic insufficiency has shown 
correlation with surgical repair, with 85% of patients having regurgitant fraction >33% progressing 
to surgery, typically in <3 years [31]. Discordance between echocardiographic and MRI assessment 
of mitral insufficiency has been reported (r = 0.6), with MRI predicting postsurgical LV remodeling 
more accurately (r = 0.85, P < .0001) than echocardiography (r = 0.32; P = .1) in a prospective 
multicenter trial [32]. MRI provides high inter- and intrareader reproducibility [33] with 
semiautomated flow measurement in the ascending aorta and main pulmonary artery. 



 
MRI may provide additional insight in the setting of suspected bioprosthetic valve dysfunction and 
suboptimal or clinically discordant transthoracic echocardiography (TTE) [24], with safe imaging 
possible across a broad range of prostheses at 1.5T, with most safe at 3.0T [34]. MRI can also aid in 
differentiation between aortic valvular as well as sub- and supravalvular stenosis, delineate leaflet 
morphology, with the valve type characterized on surface echocardiography often (20%) 
reclassified after tomographic imaging with MRI, CT, or TEE [23], and provide complementary 
assessment of the degree of stenosis by planimetry [35]. More advanced analysis of bulk flow 
patterns and energetics (including 4-D flow), myocardial strain, and tissue mapping on MRI are 
predominantly experimental at this point but may eventually provide more routine clinical insight 
to native and postsurgical valve function [36-39], with the potential to obtain concomitant 
cardiovascular morphologic information [40]. MRI can aid in anatomic delineation as well as 
identification of diffuse myocardial fibrosis in patients with mitral valve prolapse. In a retrospective 
study of patients with mitral valve prolapse, postcontrast T1-weighted times were significantly 
shorter in those patients with complex ventricular arrhythmia (324 versus 354 ms, P = .03) [41]. In a 
group of patients with mitral annular disjunction, papillary muscle fibrosis was more often noted in 
those patients with severe arrhythmia events (36% versus 9%, P = .03) [42]. A systematic review of 
19 studies showed strong correlation between late gadolinium enhancement (LGE) in papillary 
muscle (odds ratio [OR] 4.09, 95% CI, 1.28–13.05) and longitudinal mitral annular disjunction 
distance (OR 1.16, 95% CI, 1.02–1.33) with ventricular arrhythmia [43]. 
 
Although CT and echocardiography are most commonly used for planning and follow-up of 
structural and VHD interventions, MRI is playing an increasing role in this expanding field [35], 
capitalizing on the good spatial and temporal resolution, large field of view, and inherent tissue 
characterization available with MRI.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
G. MRI Heart Function with Stress
There is no relevant literature to support the use of MRI heart function with stress for the 
evaluation of dyspnea due to suspected VHD, ischemia excluded.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
H. Radiography Chest
Chest radiography can provide information on heart failure in the setting of VHD. Diagnosis of 
specific valve abnormalities is limited, but radiographs may aid in identification of characteristic 
cardiac chamber and great vessel changes [44] as well as marked calcification of aortic root or 
mitral annulus.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
I. Rb-82 PET/CT Heart
There is no relevant literature to support the use of Rb-82 PET/CT heart for the evaluation of 
dyspnea due to suspected VHD, ischemia excluded.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
J. SPECT or SPECT/CT MPI Rest and Stress



There is no relevant literature to support the use of single-photon emission computed tomography 
(SPECT) or SPECT/CT myocardial perfusion imaging (MPI) for the evaluation of dyspnea due to 
suspected VHD, ischemia excluded.

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
K. US Echocardiography Transesophageal
TEE is useful in the assessment of suspected VHD with suboptimal or clinically discordant TTE 
results [24] and is critical in perioperative assessment of VHD. Novel developments in automated 
3-D assessment shows promise in delineation of mitral valve anatomy, with good correlation 
between 3-D and 2-D assessment noted for all parameters—intercommissural diameter (r = 0.84, P 
< .01), mitral annular area (r = 0.94, P > .01), anterior leaflet length (r = 0.83, P < .01), and posterior 
leaflet length (r = 0.67, P < .01) [45]—where assessment of pulmonary vein flow can give insight to 
prosthetic mitral valve thrombosis [46]. En-face 3-D TEE imaging of leaflet is feasible but led to 
nonsignificant underestimation when compared with measurements obtained from 2-D TEE views 
in a series of patients undergoing elective cardiac surgery or intervention [47].

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
L. US Echocardiography Transthoracic Resting
TTE is the primary modality for diagnosis, assessment, and follow-up of native and prosthetic VHD 
[21,48], providing insights to anatomy, mechanism of disease, and hemodynamic impact. 
Evaluation of leaflet morphology is typically obtained first by echocardiography, with proposed 
schemes to distinguish unicuspid from bicuspid or tricuspid aortic valves [49], although there is 
reported a common (20%) reclassification of leaflet morphology as determined on surface 
echocardiography after MRI, CT, or TEE imaging [23], or internal review of echocardiography 
images [50]. Bicuspid leaflet morphology as identified on echocardiography can predict valvular 
function and aortic dilation [51], with a prospective group of 852 patients with bicuspid valve 
having aortic regurgitation (23%) related to valve prolapse (OR: 5.16, P < .0001), and aortic stenosis 
(22%) associated with fused right and noncusps, (OR: 2.09, P < .001), and the presence of raphe 
(OR: 2.75, P < 0.001). Gradation of valve abnormality (eg, mild, moderate, or severe aortic stenosis) 
is predominantly obtained by echocardiography. Echocardiographic assessment of early 
bioprosthetic valve failure can be addressed systematically with correlation to surgical changes 
[52]. Patient prosthesis mismatch has been associated with raised transprosthetic pressure after 
mitral valve replacement, although only when calculated by the continuity equation (P = .021) [53]. 
Doppler parameters may be useful in estimating LV filling pressure in patients with mitral annular 
calcification [54]; in a group of 50 patients with mitral annular calcification, the ratio of early-to-late 
diastolic filling velocity (mitral E/A) showed the best correlation, (r = 0.66; P < .001), whereas the 
ratio of early diastolic filling velocity-to-mitral annulus velocity (E/e') demonstrated weak 
correlation (r = 0.42; P = .003). 
 
Large-scale screening of populations revealed newly identified VHD in 51% of 2,500 patients >65 
years of age, although this was commonly mild [55], with cardiac auscultation by general 
practitioners showing modest sensitivity and specificity (44% and 69% , respectively) in 
asymptomatic patients, even in the setting of significant disease [56]. TTE 3-D techniques may 
improve assessment of mitral or aortic valve dysfunction, with a systematic review showing the 
strongest evidence for estimating the mitral valve area in patients with rheumatic mitral valve 
stenosis and the vena contracta area in patients with mitral insufficiency [57]. Echocardiography 



has provided mechanistic clarification to tricuspid valve insufficiency induced by device leads; 
notably, when the lead tip was in the interventricular septum or if the lead was shown to be 
impinging on a leaflet, the device lead was more likely to impede leaflet mobility (P < .05), and 
interfering leads were associated with more significant tricuspid regurgitation than noninterfering 
leads (P < .05) [58]. Echocardiographic assessment of the left atrium may improve insights to aortic 
and mitral valve dysfunction [59]. 
 
Novel strain imaging applications have shown promise in characterizing LV changes in patients 
with aortic stenosis and aortic insufficiency [60]. Volume loop characteristics (area under receiver 
operating characteristic curve [AUC] = 0.99, 1.00, and 1.00; all P < .01) showed improved 
discrimination relative to peak strain (AUC = 0.75, 0.89, and 0.76; P = .06, <.01, and .08, 
respectively) and LV ejection fraction (AUC = 0.56, 0.69 and 0.69; all P > .05) to distinguish aortic 
valve stenosis versus control, aortic valve regurgitation versus control, and aortic valve stenosis 
versus aortic valve regurgitation groups, respectively. Strain imaging has also shown promise in 
providing improved insight to aortopathy and aortic elasticity in patients with a bicuspid valve [61].

Variant 1: Dyspnea due to suspected valvular heart disease. Ischemia excluded. Initial 
imaging.  
M. US Echocardiography Transthoracic Stress
TTE stress may be useful in further characterization of mitral and aortic stenosis, for example, in 
setting of discrepant resting echocardiographic gradation of stenosis and patient symptoms 
[21,24], as well as evaluating symptoms and exercise capacity of patients. Stress echocardiography 
may be useful in determining eligibility for competitive sports [62], with exercise-induced changes 
to ventricular response and valvular lesion, as well as changes to right ventricular (RV) systolic 
pressure potentially aiding in decision making.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
A. Arteriography Coronary with Ventriculography
There is no relevant literature to support the use of arteriography coronary with ventriculography 
for the evaluation of dyspnea due to suspected cardiac arrhythmia, ischemia excluded.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
B. CT Coronary Calcium
There is no relevant literature to support the use of CT coronary calcium for the evaluation of 
dyspnea due to suspected cardiac arrhythmia, ischemia excluded.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
C. CT Heart Function and Morphology
Cardiac CT can provide precise anatomic and morphologic information in a range of pathologies 
that may lead to cardiac dysrhythmia and, in some cases, can lend insight to tissue 
characterization. A scoring system combining CT-derived morphologic and tissue characterization 
in 77 patients with diagnosed or suspected arrhythmogenic RV cardiomyopathy/dysplasia 
(ARVC/D) yielded a sensitivity of 77.8%, a specificity of 96.0%, a positive predictive value of 91.3%, 
a negative predictive value of 88.9%, and an accuracy of 89.6% [63]. Automated quantitation of fat 
in the RV free wall on CT imaging using a fat extent threshold of 8.5% was used to diagnose 
ARVC/D with 94% sensitivity (95% CI, 82%–98%) and 92% specificity (95% CI, 83%–96%) [64]. 
Quantitation of fat is not regularly performed in a clinical setting, but qualitative assessment of 



extensive fatty change in conjunction with RV dilation and dysfunction as demonstrated on 4-D 
cine imaging may be useful. Epicardial fat distribution on CT imaging has also been investigated 
for diagnosis of ARVD/C, with the optimal cutoff LV epicardial adipose tissue index (normalized to 
mediastinal adipose tissue) of 0.24, with a sensitivity and specificity of 91% and 71%, respectively 
[65]. Wall thinning, hypoperfusion, and delayed enhancement can identify scars [66]. Myocardial 
scars depicted by CT have been compared with electrical features from electroanatomic mapping, 
with overall segmental concordance good (κ = 0.536), suggesting at least a potential role of CT 
integration in ventricular tachycardia and radiofrequency catheter ablation procedures [67]. 
 
CT can provide a precise regional anatomic survey for pre- and intraprocedural guidance of 
catheter ablation [66], with potential ablation targets notably located within 1 cm of critical 
structures such as coronary arteries and phrenic nerve in 35 (80%) and 18 (37%) patients, 
respectively [68]. CT also provides robust anatomic delineation of pulmonary vein and left atrial 
appendage anatomy [28] for both planning and follow-up of pulmonary vein ablation as well as 
left atrial appendage occlusion for atrial fibrillation treatment. Measured attenuation of epicardial 
fat has shown to be a predictor of electrophysiologic properties of the adjacent left atrium in 
patients with atrial fibrillation [69].

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
D. CTA Coronary Arteries
There is no relevant literature to support the use of CTA coronary arteries for the evaluation of 
dyspnea due to suspected cardiac arrhythmia, ischemia excluded.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
E. FDG-PET/CT Heart
Patients may benefit from PET imaging for scar identification and for prediction of ventricular 
arrhythmia and sudden cardiac death. Full thickness myocardial scarring has shown strong 
association with major arrhythmic events after accounting for age, sex, cardiovascular risk factors, 
beta-blocker therapy, and resting LV ejection fraction (adjusted hazard ratio per 10% increase in 
scars, 1.48 [95% CI, 1.22–1.80]; P < .001) in patients with low LV ejection fraction (<35%) [70].

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
F. MRI Heart Function and Morphology
Ventricular arrhythmias are the primary cause of sudden cardiac death, and the presence and 
characterization of myocardial scars on MRI can help predict the likelihood of ventricular 
arrhythmia or sudden cardiac death in patients with nonischemic myocardial disease [66]. In a 
review of 15 studies, with a total of 2,747 patients, in patients with a myocardial scar, the risk for 
adverse cardiac events was more than 3-fold higher, and the risk for arrhythmic events 5-fold 
higher compared to patients without a myocardial scar [71]. Life threatening arrhythmic events rate 
was significantly higher in hypertrophic cardiomyopathy patients with significant LGE than in those 
without (3.0%/year versus 0.5%/year, P = .011); furthermore, in these patients, the annual events 
rate was noted to be significantly higher in patients with T2-weighted high signal than in those 
without (5.8%/year versus 0.9%/year, P = .008) [72]. In a systematic review of patients with known 
sarcoidosis and suspected cardiac involvement, the combined end point of death or ventricular 
arrhythmia occurred in 64 patients with scarring versus 18 patients without scarring on LGE 
imaging on MRI (annualized incidence, 8.8% versus 0.6%; relative risk 6.20 [95% CI, 2.47–15.6]; P < 
.001) [73]. Across a wide spectrum of patients with dilated cardiomyopathy captured in a 
systematic review and meta-analysis of 29 studies, LGE on MRI was strongly and independently 



associated with ventricular arrhythmia or sudden cardiac death [74]. In a meta-analysis of 19 
studies of patients with ischemic and nonischemic cardiomyopathy, LGE showed a pooled OR for 
arrhythmic event of 5.62 (95% CI, 4.20–7.51), with no significant differences between ischemic 
cardiomyopathy and nonischemic cardiomyopathy patients [75]. In an investigation of 59 patients 
with cardiac sarcoidosis, multivariate regression analysis showed the extent of LGE to be the sole 
independent predictor of outcome events on cardiac MRI, with a hazard ratio of 2.2 per tertile 
(95% CI, 1.07–4.59), with extent of LGE >22% (third tertile) had positive and negative predictive 
values for serious cardiac events of 75% and 76%, respectively [76]. 
 
Morphologic analysis of fibrotic scarring in nonischemic dilated cardiomyopathy has shown 
promise in prediction of electrophysiologic impact [77]. In a group of patients with systemic 
sclerosis, extracellular volume as measured on MRI corresponded with a risk for significant 
arrhythmia [78]. In a group of cardiac resynchronization therapy patients, an algorithm based on 
scar mass as quantitated by MRI identified 148 patients (68.2%) without implantable cardioverter-
defibrillator therapy/sudden cardiac death during follow-up with a 100% negative predictive value 
[79], and appropriate implantable cardioverter-defibrillator therapy can be predicted in ischemic 
cardiomyopathy patients with primary prevention implantable cardioverter-defibrillator by 
quantifying the LGE border zone [80]. Concomitant assessment for structural heart disease and LV 
function can also be obtained. 
 
MRI can provide tissue-specific direction for targeted treatment of both ventricular and atrial 
arrhythmic foci [81,82]. 
 
Morphologic and functional criteria as assessed by MRI are useful in cases of suspected ARVC/D 
[83].

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
G. MRI Heart Function with Stress
There is no relevant literature to support the use of MRI heart function with stress for the 
evaluation of dyspnea due to suspected cardiac arrhythmia, ischemia excluded.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
H. Radiography Chest
There is no relevant literature to support the use of radiography for the evaluation of dyspnea due 
to suspected arrhythmia, ischemia excluded. Radiography may demonstrate cardiac silhouette 
enlargement as well as pulmonary vascular cephalization or edema as may be seen in setting of 
cardiac arrhythmia.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
I. Rb-82 PET/CT Heart
There is no relevant literature to support the use of Rb-82 PET/CT heart for the evaluation of 
dyspnea due to suspected cardiac arrhythmia, ischemia excluded.

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
J. SPECT or SPECT/CT MPI Rest and Stress
There is scant literature regarding the use of SPECT or SPECT/CT MPI in the assessment of 
suspected arrhythmia. MPI can elucidate remodeling in patients who are postcardiac 
resynchronization therapy, with differential incidence of ventricular arrhythmia [84], and gated 



SPECT imaging phase analysis has shown potential in differentiating degrees of mechanical 
dyssynchrony [85].

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
K. US Echocardiography Transesophageal
There is scant literature regarding the use of TEE in the assessment of suspected arrhythmia. Left 
atrial appendage size (left atrial appendage end-diastolic volume [P = .002; OR 1.6] and 
morphology [cauliflower shape (P = .001; OR, 10.2)]) are predictive of thromboembolic events in 
patients with nonvalvular atrial fibrillation [86].

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
L. US Echocardiography Transthoracic Resting
Echocardiography is an important noninvasive imaging technique in the diagnosis and prognosis 
of patients with arrhythmias, providing insight into associated myocardial, valvular, and structural 
disorders. Morphologic and functional criteria are useful in RV assessment in cases of suspected 
ARVC/D [83]. Assessment of LV function by speckle-tracking strain assessment has shown utility in 
prediction of ventricular arrhythmia in patients post-LV assist devices placement [87], and ejection 
fraction as assessed by echocardiography has shown predictive value in ventricular arrhythmia as 
well as in all-cause mortality in heart failure patients with implantable cardioverter-defibrillators 
[88]. 
 
Use of speckle-tracking strain analysis has also shown incremental prognostic value to typical 
clinical and ECG criteria for cardiac resynchronization therapy using cutoff values of −9% for global 
circumferential and longitudinal strain [89], whereas another group of cardiac resynchronization 
patients with global longitudinal strain better than −8.3% showed event-free survival benefit (log 
rank, P < .001) [90]. Strain analysis with speckle tracking has also shown utility in risk assessment of 
malignant arrhythmias in Chagas disease (OR, 0.72; 95% CI, 0.54–0.96; P = .026) [91], in early 
detection of LV systolic dysfunction in setting of frequent ventricular extrasystoles, with global LV 
longitudinal strain decreased in patients with frequent ventricular extrasystoles (−18.4 ± 3.4 and 
−21.8 ± 2.4; P < .001) [92], as well as predicting outcomes in dyssynchrony patients, using either 
tissue Doppler imaging longitudinal velocity delay ≥80 ms or speckle-tracking radial strain delay 
≥130 ms [93]. 
 
Although epicardial fat is rarely noted on clinical reports, associations have been noted between 
epicardial fat thickness as measured on echocardiography and dysrhythmia [94], in the prediction 
of successful electrical cardioversion and atrial fibrillation recurrence [95,96], and in the ablation of 
premature ventricular contractions [97]. 
 
Measurement of left atrial volume has shown to be a predictor of persistent atrial fibrillation after 
mitral valve surgery, with indexed volume >39 mL/m2 having a sensitivity of 79% (AUC: 0.762, SE: 
0.051, P < .001) [98].

Variant 2: Dyspnea due to suspected cardiac arrhythmia. Ischemia excluded. Initial imaging.  
M. US Echocardiography Transthoracic Stress
There is no relevant literature to support the use of TTE stress for the evaluation of dyspnea due to 
suspected arrhythmia, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.



Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
A. Arteriography Coronary with Ventriculography
There is no relevant literature to support the use of arteriography coronary with ventriculography 
for the evaluation of dyspnea due to suspected pericardial disease, ischemia excluded. This is 
distinguished from right heart catheterization.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
B. CT Chest Without IV Contrast
There is scant evidence to support the use of CT chest without intravenous (IV) contrast for the 
evaluation of dyspnea due to suspected pericardial disease, ischemia excluded. The presence of 
bilateral pleural effusions detected on chest CT in patients with acute pericarditis is associated with 
increased risk of in-hospital cardiac tamponade (OR = 7.52, 95% CI, 2.16–26.21) and not associated 
with pericarditis recurrence in the long term, typically considered the most problematic 
complication of pericarditis [99].

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
C. CT Chest Without and With IV Contrast
There is no relevant literature to support the use of CT chest without and with IV contrast for the 
evaluation of dyspnea due to suspected pericardial disease, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
D. CT Chest With IV Contrast
There is no relevant literature to support the use of CT chest with IV contrast for the evaluation of 
dyspnea due to suspected pericardial disease, ischemia excluded. Although this procedure is not a 
first-line imaging test, it may provide information on pericardial changes such as effusion, 
thickening, or enhancement.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
E. CT Coronary Calcium
There is no relevant literature to support the use of CT coronary calcium for the evaluation of 
dyspnea due to suspected pericardial disease, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
F. CT Heart Function and Morphology
CT is useful in depiction of abnormal pericardial thickening as well as in defining the extent of 
pericardial calcification [100]. CT can be considered for assessing size, location, and density of 
pericardial effusion, which may not be fully demonstrated by echocardiography, and can be used 
for planning before pericardiocentesis or pericardial cardiectomy. In cases of suspected pericardial 
masses or tumors, CT can be used for assessment of size and location, involvement or invasion of 
adjacent structures, and extracardiac findings such as lymphadenopathy [101]. 
 
CT provides limited and indirect hemodynamic information, such as enlargement of the atria and 
venae cavae in cases of pericardial constriction. Functional evaluation using CT is possible using 
retrospective ECG-gated examination, although the utility of such techniques are challenged by 
breath-held acquisition, suboptimal temporal resolution compared to echocardiography, and MRI 
as well as the potential increased artifact case of tachycardia or unstable heart rhythm [100,102]. 
 
Epicardial fat volume quantitation by CT has shown some association with the outcome of patients 
with a first episode of acute pericarditis and a potential prognostic implication [103], although this 



has limited clinical application to date.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
G. CTA Chest
There is no relevant literature to support the use of CTA chest for the evaluation of dyspnea due to 
suspected pericardial disease, ischemia excluded. Although this procedure is not a first-line 
imaging test, it may provide information on pericardial changes such as effusion, thickening, or 
enhancement.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
H. CTA Coronary Arteries
There is no relevant literature to support the use of CTA coronary arteries for the evaluation of 
dyspnea due to suspected pericardial disease, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
I. FDG-PET/CT Heart
There is limited literature regarding the use of FDG-PET/CT in the assessment of suspected 
pericardial disease, ischemia excluded. The presence of pericardial inflammation as stratified by 
standardized uptake values can predict reversibility of transient constrictive pericarditis with 
medical treatment. Using pericardial maximized standardized uptake value of 3.0 as a cutoff value, 
sensitivity, specificity, positive predictive value, and negative predictive value of FDG-PET/CT for 
predicting response to medical treatment were 100%, 71%, 82%, and 100%, respectively, in a small 
group (n = 16) of prospectively recruited patients with constrictive pericarditis [104]. FDG-PET/CT 
may be helpful in making a presumptive diagnosis of malignancy, especially in nondiagnostic 
pericardial effusion with relatively high-risk pericardiocentesis, or may guide selection of an 
optimal biopsy site with a potential high yield of disease. However, infectious processes such as 
tuberculosis can show increased FDG uptake mimicking malignancy, which limits FDG-PET/CT 
utility in differentiation between benign and malignant pericardial disease [105].

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
J. MRI Heart Function and Morphology
MRI is typically an adjuvant test when echocardiographic data are ambiguous or inconclusive for 
constriction [102]. MRI can provide reliable depiction of pericardial thickening, typically with dark 
blood imaging, with prognostic value for patients eventually progressing to surgical resection. 
Furthermore, cardiac MR, real-time cine imaging with free breathing can suggest constrictive 
pathophysiology where the septum shifts toward the left ventricle during early inspiration. A model 
combining pericardial thickness and relative interventricular septal excursion provided the best 
overall performance in prediction of constrictive pericarditis in a surgical series of patients (C 
statistic, 0.98, 100% sensitivity, 90% specificity) [106], although shallow breaths or vigorous 
inspiration may result in false negative or false positive results, respectively [107]. 
 
LGE can reveal the presence and severity of pericardial inflammation [102], with histologic changes 
corresponding to MRI appearance. MRI may define the extent of associated myocarditis when 
there is a concern of myocardial involvement and echocardiography is inconclusive [107]. MRI can 
provide incremental value to evaluate the presence and severity of active pericardial inflammation 
in patients with constrictive pericarditis [107]. Pericardial delayed hyperenhancement quantitative 
assessment on cardiac MRI can be a helpful prognostic tool in the care of patients with recurrent 
pericarditis, with the potential for image-guided treatment modulation. In one series, patients 



without MRI follow-up had a larger number of steroid pulse therapies and a higher overall total 
amount of steroids administered compared with patients followed with MRI (P = .003 and P = .001, 
respectively), with recurrence and pericardiocentesis rates also lower in those patients receiving 
MRI (P < .0001) [108]. Quantitative pericardial delayed hyperenhancement has shown improved 
discrimination for clinical remission compared with other clinical variables (hazard ratio: 0.77; 95% 
CI, 0.64–0.93; P = .008), was independently associated with clinical remission [109], and is useful in 
the follow-up of patients with suspected chronic or remitting pericarditis. LGE can be present in 
end-stage pericarditis reflecting fibrosis with no or limited active inflammation, although this tends 
to be minimal in amount. MRI may also provide insight to pericardial edema using non-IV 
contrast–enhanced sequences (T2-weighted short-tau inverted recovery fast spin-echo sequences), 
although the presence of pericardial effusion may confound analysis of inflammatory change. 
 
MRI is useful for assessing pericardial masses and tumors, particularly for accurate localization and 
sizing and tissue characterization [101,110], and to delineate potential extension to adjacent 
thoracic anatomic structures.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
K. MRI Heart Function with Stress
There is no relevant literature to support the use of MRI heart function with stress for the 
evaluation of dyspnea due to suspected pericardial disease, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
L. Radiography Chest
Chest radiograph may show suggestive findings of pericardial effusion, pericardial calcifications, 
pericardial cyst, and pericardial defect/absence, although this generally has a lower diagnostic 
potential to delineate pericardial abnormities compared with echocardiography, CT, and MRI.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
M. Rb-82 PET/CT Heart
There is no relevant literature to support the use of Rb-82 PET/CT heart for the evaluation of 
dyspnea due to suspected pericardial disease, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
N. SPECT or SPECT/CT MPI Rest and Stress
There is no relevant literature to support the use of SPECT or SPECT/CT MPI rest and stress for the 
evaluation of dyspnea due to suspected pericardial disease, ischemia excluded.

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
O. US Echocardiography Transesophageal
TEE can be considered in assessing pericardial disease in a patients with suspected complicated 
acute pericarditis, constrictive pericarditis, or pericardial masses if TTE images are of poor quality 
[102].

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
P. US Echocardiography Transthoracic Resting
TTE is safe and typically considered the first-line imaging modality in almost all types of pericardial 
diseases [100,102]. Most acute pericarditis cases are uncomplicated, and echocardiography is the 
first and only imaging test necessary, with diagnosis based on characteristic chest pain and ECG 
changes. Echocardiography is performed primarily for risk stratification and may identify a 



pericardial effusion, evidence of pericardial tamponade, wall motion abnormalities, or features of 
pericardial constriction [102]. Only a minority of patients will develop complicated pericarditis. 
Echocardiography can provide insight to hemodynamic changes including tamponade and 
constrictive pathophysiology, although this has a limited role in assessing the presence of active 
pericardial inflammation [107]. 
 
Echocardiography can detect pericardial masses/nodules and is useful in assessing associated 
hemodynamic effects of tumor or effusion [110].

Variant 3: Dyspnea due to suspected pericardial disease. Ischemia excluded. Initial imaging.  
Q. US Echocardiography Transthoracic Stress
There is no relevant literature to support the use of TTE stress for the evaluation of dyspnea due to 
suspected pericardial disease, ischemia excluded. Stress echocardiography has shown some 
promise in demonstrating exercise-induced changes in patients with suspected diastolic 
dysfunction. E/e' values postexercise have served as a surrogate for elevated LV filling pressures, 
and exercise-induced pulmonary hypertension has also been noted [111]. Further validation of this 
technique, increased standardization of imaging protocols, as well as integration of this 
information into clinical pathways all could potentially elevate this emerging practice to more 
widespread adoption.

 
Summary of Recommendations

Variant 1: US echocardiography transthoracic resting and radiography chest are usually 
appropriate for the initial imaging of adults with dyspnea due to suspected VHD with 
ischemia excluded. These procedures are complementary, with echocardiography providing 
specific anatomic and hemodynamic insight to valve function, while radiography can provide 
broad characterization of a range of potential causes of dyspnea and, less commonly, can 
provide insight to particular valve abnormalities.

•

Variant 2: US echocardiography transthoracic resting or MRI heart function and morphology 
without and with IV contrast is usually appropriate for the initial imaging of adults with 
dyspnea due to suspected cardiac arrhythmia with ischemia excluded. Echocardiography and 
MRI both provide insight into associated myocardial, valvular, and structural disorders. MRI 
can delineate areas of myocardial scar or infiltrative processes. Echocardiography can also 
characterize myocardial abnormality, for example, with speckle tracking, although this is less 
established than MRI techniques. These procedures are equivalent alternatives (ie, only one 
procedure will be ordered to provide the clinical information to effectively manage the 
patient’s care). The panel did not agree on recommending radiography chest for the initial 
imaging of adults with dyspnea due to suspected cardiac arrhythmia with ischemia excluded. 
Radiography is unlikely to reveal the etiology of arrhythmia but can provide broad 
characterization of a range of potential causes of dyspnea. There is insufficient medical 
literature to conclude whether or not these patients would benefit from radiography chest 
for this clinical scenario. Radiography chest in this patient population is controversial but may 
be appropriate.

•

Variant 3: US echocardiography transthoracic resting or radiography chest or CT heart 
function and morphology with IV contrast or MRI heart function and morphology without 
and with IV contrast is usually appropriate for the initial imaging of adults with dyspnea due 
to suspected pericardial disease with ischemia excluded. Echocardiography allows 

•



morphologic and hemodynamic assessment of pericardial abnormalities, although pericardial 
depiction is usually incomplete. CT provides complete anatomic depiction of the pericardium 
including calcification, although physiologic assessment is limited. MRI provides morphologic 
and hemodynamic evaluation of the pericardium, and inflammation can be evaluated with a 
variety of techniques; however calcific change is not reliably imaged. These procedures are 
equivalent alternatives (ie, only one procedure will be ordered to provide the clinical 
information to effectively manage the patient’s care). The panel did not agree on 
recommending FDG-PET/CT heart for the initial imaging of adults with dyspnea due to 
suspected pericardial disease with ischemia excluded. Inflammatory change or neoplastic 
involvement of the pericardium may be delineated with FDG-PET/CT imaging. There is 
insufficient medical literature to conclude whether or not these patients would benefit from 
FDG-PET/CT heart for this clinical scenario. FDG-PET/CT heart in this patient population is 
controversial but may be appropriate.

 
Supporting Documents
The evidence table, literature search, and appendix for this topic are available at 
https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the 
final rating round tabulations for each recommendation. 
 
For additional information on the Appropriateness Criteria methodology and other supporting 
documents, please go to the ACR website at https://www.acr.org/Clinical-Resources/Clinical-Tools-
and-Reference/Appropriateness-Criteria.
 
Appropriateness Category Names and Definitions

Appropriateness 
Category Name

Appropriateness 
Rating Appropriateness Category Definition

Usually Appropriate 7, 8, or 9
The imaging procedure or treatment is indicated in 
the specified clinical scenarios at a favorable risk-
benefit ratio for patients.

May Be Appropriate 4, 5, or 6

The imaging procedure or treatment may be 
indicated in the specified clinical scenarios as an 
alternative to imaging procedures or treatments with 
a more favorable risk-benefit ratio, or the risk-benefit 
ratio for patients is equivocal.

May Be Appropriate 
(Disagreement) 5

The individual ratings are too dispersed from the 
panel median. The different label provides 
transparency regarding the panel’s recommendation. 
“May be appropriate” is the rating category and a 
rating of 5 is assigned.

Usually Not Appropriate 1, 2, or 3

The imaging procedure or treatment is unlikely to be 
indicated in the specified clinical scenarios, or the 
risk-benefit ratio for patients is likely to be 
unfavorable.

 
Relative Radiation Level Information

https://acsearch.acr.org/list
https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria
https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria


Potential adverse health effects associated with radiation exposure are an important factor to consider 
when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures 
associated with different diagnostic procedures, a relative radiation level (RRL) indication has been 
included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose 
quantity that is used to estimate population total radiation risk associated with an imaging procedure. 
Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ 
sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation 
exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as 
compared with those specified for adults (see Table below). Additional information regarding radiation 
dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation 
Dose Assessment Introduction document.
Relative Radiation Level Designations

Relative Radiation Level* Adult Effective Dose Estimate 
Range

Pediatric Effective Dose 
Estimate Range

O 0 mSv  0 mSv
☢ <0.1 mSv <0.03 mSv

☢☢ 0.1-1 mSv 0.03-0.3 mSv
☢☢☢ 1-10 mSv 0.3-3 mSv

☢☢☢☢ 10-30 mSv 3-10 mSv
☢☢☢☢☢ 30-100 mSv 10-30 mSv

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in 
these procedures vary as a function of a number of factors (e.g., region of the body exposed to ionizing 
radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”
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