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Variant: 1   Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.

Procedure Appropriateness Category Relative Radiation Level

Radiography knee Usually Appropriate ☢

US knee Usually Not Appropriate O

Fluoroscopy knee Usually Not Appropriate ☢

Image-guided aspiration knee Usually Not Appropriate Varies

MRI knee without and with IV contrast Usually Not Appropriate O

MRI knee without IV contrast Usually Not Appropriate O

CT arthrography knee Usually Not Appropriate ☢

CT knee with IV contrast Usually Not Appropriate ☢

CT knee without and with IV contrast Usually Not Appropriate ☢

CT knee without IV contrast Usually Not Appropriate ☢

3-phase bone scan knee Usually Not Appropriate ☢☢☢

FDG-PET/CT whole body Usually Not Appropriate ☢☢☢☢

Fluoride PET/CT whole body Usually Not Appropriate ☢☢☢☢

WBC scan and sulfur colloid scan knee Usually Not Appropriate ☢☢☢☢

 
Variant: 2   Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.

Procedure Appropriateness Category Relative Radiation Level

Image-guided aspiration knee Usually Appropriate Varies

US knee May Be Appropriate O

MRI knee without and with IV contrast May Be Appropriate O

MRI knee without IV contrast May Be Appropriate O

CT knee with IV contrast May Be Appropriate ☢

3-phase bone scan knee May Be Appropriate ☢☢☢

WBC scan and sulfur colloid scan knee May Be Appropriate ☢☢☢☢

Fluoroscopy knee Usually Not Appropriate ☢

CT arthrography knee Usually Not Appropriate ☢

CT knee without and with IV contrast Usually Not Appropriate ☢

CT knee without IV contrast Usually Not Appropriate ☢

FDG-PET/CT whole body Usually Not Appropriate ☢☢☢☢

Fluoride PET/CT whole body Usually Not Appropriate ☢☢☢☢

 
Variant: 3   Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening 
or osteolysis or instability. Additional imaging following radiographs.

Procedure Appropriateness Category Relative Radiation Level

MRI knee without IV contrast Usually Appropriate O

CT knee without IV contrast Usually Appropriate ☢
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3-phase bone scan knee May Be Appropriate ☢☢☢

US knee Usually Not Appropriate O

Fluoroscopy knee Usually Not Appropriate ☢

MRI knee without and with IV contrast Usually Not Appropriate O

CT arthrography knee Usually Not Appropriate ☢

CT knee with IV contrast Usually Not Appropriate ☢

CT knee without and with IV contrast Usually Not Appropriate ☢

FDG-PET/CT whole body Usually Not Appropriate ☢☢☢☢

Fluoride PET/CT whole body Usually Not Appropriate ☢☢☢☢

WBC scan and sulfur colloid scan knee Usually Not Appropriate ☢☢☢☢

 
Variant: 4   Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.

Procedure Appropriateness Category Relative Radiation Level

CT knee without IV contrast Usually Appropriate ☢

MRI knee without IV contrast May Be Appropriate O

3-phase bone scan knee May Be Appropriate ☢☢☢

US knee Usually Not Appropriate O

Fluoroscopy knee Usually Not Appropriate ☢

MRI knee without and with IV contrast Usually Not Appropriate O

CT arthrography knee Usually Not Appropriate ☢

CT knee with IV contrast Usually Not Appropriate ☢

CT knee without and with IV contrast Usually Not Appropriate ☢

FDG-PET/CT whole body Usually Not Appropriate ☢☢☢☢

Fluoride PET/CT whole body Usually Not Appropriate ☢☢☢☢

WBC scan and sulfur colloid scan knee Usually Not Appropriate ☢☢☢☢

 
Variant: 5   Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.

Procedure Appropriateness Category Relative Radiation Level

CT knee without IV contrast Usually Appropriate ☢

MRI knee without IV contrast May Be Appropriate O

US knee Usually Not Appropriate O

Fluoroscopy knee Usually Not Appropriate ☢

MRI knee without and with IV contrast Usually Not Appropriate O

CT arthrography knee Usually Not Appropriate ☢

CT knee with IV contrast Usually Not Appropriate ☢

CT knee without and with IV contrast Usually Not Appropriate ☢

3-phase bone scan knee Usually Not Appropriate ☢☢☢

FDG-PET/CT whole body Usually Not Appropriate ☢☢☢☢

Fluoride PET/CT whole body Usually Not Appropriate ☢☢☢☢

WBC scan and sulfur colloid scan knee Usually Not Appropriate ☢☢☢☢

 
Variant: 6   Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 



tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.

Procedure Appropriateness Category Relative Radiation Level

US knee Usually Appropriate O

MRI knee without IV contrast Usually Appropriate O

Fluoroscopy knee Usually Not Appropriate ☢

MRI knee without and with IV contrast Usually Not Appropriate O

CT arthrography knee Usually Not Appropriate ☢

CT knee with IV contrast Usually Not Appropriate ☢

CT knee without and with IV contrast Usually Not Appropriate ☢

CT knee without IV contrast Usually Not Appropriate ☢

3-phase bone scan knee Usually Not Appropriate ☢☢☢

FDG-PET/CT whole body Usually Not Appropriate ☢☢☢☢

Fluoride PET/CT whole body Usually Not Appropriate ☢☢☢☢

WBC scan and sulfur colloid scan knee Usually Not Appropriate ☢☢☢☢
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Summary of Literature Review
 
Introduction/Background
Total knee arthroplasty (TKA), primarily used to treat pain and improve function in patients with 
symptomatic advanced knee osteoarthritis, is the most commonly performed joint replacement 
procedure in the United States [1,2]. In 2012, >670,000 knee replacement procedures were 
performed in the United States [3], which represents an increase of 86% since 2003 [4]. It is 
estimated that 4 million patients in the United States are currently living with a knee replacement 
[5]. By 2030, it is estimated that the annual demand for primary TKA will grow by 673% to 3.48 
million [6]. Factors contributing to the rising number of TKAs include population growth; aging and 
increased longevity of the population; expanded indications for performing TKA, especially in 
individuals >65 years of age; obesity; decline in postprocedure complications; and increased 
patient demand [7].
 
The patient satisfaction rate for TKA is relatively high, ranging from 75% to 89% [8]. Around 10% to 
30% of the patients report ongoing pain or are not satisfied with the result [9]. Factors, which 
contribute to patient dissatisfaction, include unmet expectations, functional limitations, and 
postoperative complications including pain [10]. Most TKA patients experience improved outcomes 
and long implant survival, with long-term TKA failure rates of <1% per year [5]. The growth in the 
number of primary TKA procedures has been accompanied by increased rates of TKA revision 
procedures [1]. Revision procedures for TKAs have increased by 5.4 procedures per 100,000 
persons per decade over the period from 1990 to 2002, with a mean revision burden of 8.2% [11]. 
Nearly 1.5 million of those with primary knee replacement are 50 to 69 years of age, underscoring 



a large population at risk for revision surgery and long-term complications [5]. Sharkey et al [12] 
reviewed 781 revision TKAs and found the most common failure mechanisms were loosening 
(39.9%), infection (27.4%), instability (7.5%), periprosthetic fracture (4.7%), and arthrofibrosis (4.5%). 
Infection was the most common reason for early revision (<2 years after the initial TKA), and 
aseptic loosening was the most common reason for late revision. Compared with a review 
performed by the same author in 2002 [13], polyethylene wear is no longer the major cause of 
failure, and the percentages of revisions for polyethylene wear, instability, arthrofibrosis, 
malalignment, and extensor mechanism deficiency have all decreased. Identifying the cause of a 
painful TKA before surgery is critically important because "in cases of unexplained pain, 
reoperation is unwise and frequently associated with suboptimal results” [14].

 
Special Imaging Considerations
In some patients with knee arthroplasties, repeated hemarthroses are caused by synovial 
hyperemia or true arteriovenous malformations. These patients can be successfully diagnosed with 
angiography and treated with embolization. In rare instances, geniculate and popliteal vessel 
injuries may occur during surgery [15].
A recent study reports single-photon emission CT (SPECT)/CT arthrography with Tc-99m sulfur 
colloid has a high diagnostic accuracy (97%) in the evaluation of loosening of both hip and knee 
arthroplasties in patients with persistent postprocedural pain [16]. Barnsley et al [17] also found 
arthrography with SPECT/CT to be an accurate means of identifying aseptic prosthetic joint 
loosening.

 
Initial Imaging Definition
Initial imaging is defined as imaging at the beginning of the care episode for the medical condition 
defined by the variant. More than one procedure can be considered usually appropriate in the 
initial imaging evaluation when:

There are procedures that are equivalent alternatives (i.e., only one procedure will be ordered 
to provide the clinical information to effectively manage the patient’s care)

•

OR

There are complementary procedures (i.e., more than one procedure is ordered as a set or 
simultaneously wherein each procedure provides unique clinical information to effectively 
manage the patient’s care).

•

 
Discussion of Procedures by Variant
Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
A. 3-phase bone scan knee
There is insufficient evidence to support the use of 3-phase bone scan for the initial evaluation of 
TKA.



Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
B. CT arthrography knee
There is insufficient evidence to support the use of CT arthrography for the initial evaluation of 
TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
C. CT knee with IV contrast
There is insufficient evidence to support the use of CT with intravenous (IV) contrast for the initial 
evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
D. CT knee without and with IV contrast
There is insufficient evidence to support the use of CT without and with IV contrast for the initial 
evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
E. CT knee without IV contrast
There is insufficient evidence to support the use of CT without IV contrast for the initial evaluation 
of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
F. FDG-PET/CT whole body
There is insufficient evidence to support the use of fluorine-18-2-fluoro-2-deoxy-D-glucose (FDG)-
PET/CT for the initial evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
G. Fluoride PET/CT whole body
There is insufficient evidence to support the use of fluoride PET/CT for the initial evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
H. Fluoroscopy knee
There is insufficient evidence to support the use of fluoroscopy for the initial evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
I. Image-guided aspiration knee
There is insufficient evidence to support the use of image-guided aspiration for the initial 
evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
J. MRI knee without and with IV contrast



There is insufficient evidence to support the use of MRI without and with IV contrast for the initial 
evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
K. MRI knee without IV contrast
There is insufficient evidence to support the use of MRI without IV contrast for the initial evaluation 
of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
L. Radiography knee
Radiographs can demonstrate abnormal bone and hardware alignment, periprosthetic lucencies 
and osteolysis [18-24], reactive bone formation and periostitis, periprosthetic fractures, evidence of 
polyethylene liner wear, and cement and heterotopic bone about the knee. Radiographs can often 
delineate effusion, soft-tissue swelling, foreign bodies, soft tissue emphysema, heterotopic bone, 
and cement or metal in the soft tissues. Radiographs are useful as the initial evaluation for 
symptomatology or follow-up. Radiographs are often limited in terms of sensitivity, and further 
imaging may be required.
 
Routine immediate postoperative radiographs are considered unnecessary unless the surgery is 
complicated or there are specific clinical indications warranting imaging evaluation [25,26], 
because several studies have indicated that the rate of complications identified in the immediate 
postoperative setting is low. Ververeli et al [27] compared recovery room radiographs with 
additional predischarge radiographs and found no change in the postoperative management of 
124 consecutive patients with TKAs and suggested eliminating the predischarge radiographs. 
Novack et al [25] retrospectively reviewed 4,830 consecutive patients following cemented or 
uncemented TKAs and concluded routine recovery room radiographs after an uncomplicated 
primary TKA are not a reliable mechanism for preventing mechanical complications and did not 
alter patient care.
 
Although radiographs are an integral part of the workup for suspected periprosthetic infection, 
they are neither sensitive nor specific for diagnosing infection [28,29]. The radiographic 
appearance of an infected TKA can range from "normal” to subtle periprosthetic lucency to 
advanced bone destruction. Joint effusion and soft tissue swelling are often noted as well. It is 
often not radiographically possible to distinguish infection from loosening or particle disease [21]. 
Duff et al [18] found radiographs unhelpful because loosening, periostitis, focal osteolysis, and 
radiolucent lines were seen in both infected and noninfected knees. Because minor differences in 
positioning can greatly alter the appearance of the periprosthetic lucencies, the use of oblique or 
fluoroscopically positioned images may provide improved visualization of the prosthesis-bone 
interface, especially with uncemented prostheses [30].
 
Serial follow-up radiographs are more directed toward identifying postoperative complications 
related to loosening and are important for identifying subtle changes [31,32]. Although follow-up 
radiographs are commonly performed, the frequency of assessment has not been standardized. A 
survey of 682 active members of the American Association of Hip and Knee Surgeons in 2003 
found that 80% of responders supported annual or every-other year orthopedic and radiographic 
examinations and more frequent follow-up if there were signs of failure, decreased periprosthetic 



bone quality, or a history of prior revision [33]. The routine annual or every other year radiographic 
examination for TKA evaluation consists of standing anteroposterior (AP) and lateral and a 
tangential axial view of the patellofemoral joint. Some practitioners also use standing long-leg 
(hip-to-ankle) views to provide for optimal assessment of alignment [4]. Skytta et al [34] compared 
standing hip-to-ankle radiographs and AP knee radiographs for assessment of alignment and 
found that the standard AP knee radiograph was a valid alternative to the hip-to-ankle radiograph 
for determining coronal plane alignment at the knee, but that the longer hip-to-ankle radiograph 
alone provided accurate information on the weightbearing mechanical axis in patients with 
suspected lower limb malalignment. They suggested that after acquisition of a baseline hip-to-
ankle radiograph, further follow-up could be based on targeted knee radiographs. Kosashvili et al 
[35] compared assessment of alignment on AP radiographs taken in cadaveric TKAs and found that 
interpretation of varus and valgus alignment was improved on AP views obtained in 10° of internal 
rotation compared with neutral AP views and with those obtained in 10° of external rotation.
 
Radiographic evaluation of wear is based on weightbearing AP and lateral radiographs and on 
axial radiographs. Liner wear is seen as joint space narrowing, varus or valgus deformity, or patellar 
tilt. An effusion may be present. Findings can be subtle and annual weightbearing radiographs are 
suggested for detecting subclinical wear [21]. Collier et al [36] found that 87% of measurements 
performed on standing frontal knee radiographs (on the basis of the minimum distance from the 
metallic femoral condyle to a line through the top surface of the baseplate at its widest dimension) 
were within 1 mm of the known implant thickness, but the accuracy decreased for evaluating 
polyethylene thickness in patients with wear requiring revision.
 
Instability is evaluated on radiographs obtained in extension-flexion position, under varus-valgus 
stress, and during anterior and posterior drawer maneuvers. In contrast, malalignment refers to 
suboptimal alignment of the prosthesis components relative to each other (although it is 
occasionally used to describe alignment of the bones in relation to each other and to the joint) [37] 
and is evaluated on full-length standing radiographs of the lower extremity [21].
 
Radiographs including the entire prosthesis are the initial examination for assessment of suspected 
periprosthetic fractures. Radiographs are also usually satisfactory for assessment of patellar 
complications [20] and helpful in guiding treatment [38]. Axial radiographs demonstrate the 
degree of patellar tilt or subluxation [21]. Baldini et al [39] proposed a weightbearing axial 
radiograph to better assess patellofemoral kinematics.
 
Although axial radiographs may be used to determine axial rotation of the femoral component 
[40], CT is most commonly used for this purpose. Leon-Munoz et al [41] have noted CT-scan-based 
3-D models and, therefore, supine CT scan, underestimate the degree of deformity at the knee 
joint, both in varus and valgus; therefore preoperative full-leg standing radiographs should be 
performed for patient-specific instrumentation assisted TKAs, as a complementary study, to 
analyze the position of the load-bearing axis.
 
Radiographs cannot directly image post-TKA periprosthetic soft-tissue abnormalities. However, 
radiographic signs of extensor mechanism tendon tears include patella alta, patella baja, localized 
soft-tissue swelling, posterior subluxation of the tibia, bony avulsions, and dystrophic calcifications 
within the tendon [21,42].

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 



arthroplasty. Initial imaging.  
M. US knee
There is insufficient evidence to support the use of ultrasound for the initial evaluation of TKA.

Variant 1: Follow-up of symptomatic or asymptomatic patients with a total knee 
arthroplasty. Initial imaging.  
N. WBC scan and sulfur colloid scan knee
There is insufficient evidence to support the use of white blood cell (WBC) scan and sulfur colloid 
scan for the initial evaluation of TKA.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.
Infection is a serious complication of joint arthroplasty and is reported in 0.8% to 1.9% of TKAs 
[43]. The frequency of infection is increasing as the number of primary arthroplasties increases [44]. 
Infection may be acute or delayed, with delayed infection defined as occurring at least 3 months 
postoperatively [45]. In a series, infection was responsible for 37.6% of early revisions and 21.9% of 
revisions performed >2 years after the initial operation [12]. Staphylococcus aureus and coagulase-
negative Staphylococcus species, including Staphylococcus epidermidis, are the most common 
organisms associated with these infections [46]. Both clinical findings and laboratory tests may 
serve useful in addition to imaging studies. Low-grade or chronic TKA infections may be difficult to 
diagnose preoperatively. Duff et al [18] noted that diagnosis of infection was not obvious in 53% of 
knees before revision arthroplasty. Pain is the most common presenting symptom of infection, but 
pain is a nonspecific finding [47]. In acute infection, findings such as pain, swelling, warmth, 
erythema, and fever are common, whereas chronic infections may be manifested by pain alone 
[44]. Night pain or pain at rest is characteristic of infection, whereas pain on weightbearing is more 
characteristic of mechanical loosening. Some authors suggest that infection needs to be excluded 
in all patients with pain persisting >6 months after joint replacement [18].
 
Laboratory findings in the setting of TKA infection are often nonspecific. Peripheral leukocyte 
counts are not elevated in most patients with infected prostheses. Erythrocyte sedimentation rates 
(ESRs) are abnormal in patients with infection, but this finding may also be seen in uninfected 
patients, limiting the usefulness of the test [48]. A retrospective review of 68 patients undergoing 
hip and knee revision surgery indicated that C-reactive protein (CRP) was significantly higher in 
patients with infection compared with those with loosening (sensitivity of 79% for all prostheses); 
however, a normal CRP level did not exclude infection [49]. CRP has a sensitivity of 73% to 91% 
and a specificity of 81% to 86% for the diagnosis of prosthetic knee infection when a cutoff of 
≥13.5 mg/L is used [44]. Although CRP can be elevated after surgery, under normal circumstances 
it generally returns to baseline within 2 months [44]. A large multicenter study found CRP and joint 
aspiration to be the most useful tools to diagnose infection [50]. In an attempt to construct an 
algorithm for evaluating TKA infection, Savarino et al [51] found that abnormal results for at least 2 
of 3 tests (CRP [cutoff 0.93 mg/L], ESR [cutoff 27 mm/h], and fibrinogen [cutoff 432 mg/dL]) led to 
accurate results for the diagnosis of infection (sensitivity, 93%; specificity, 100%; accuracy, 97%). 
More recently, interleukin-6 has also shown promise for diagnosing infection, with higher 
predictive values than most other serologic markers [52], and has shown excellent sensitivity for 
detecting infection after TKA when combined with CRP [53]. The American Academy of 
Orthopaedic Surgeons (AAOS) guidelines strongly recommend the use of ESR, CRP, and serum 
interleukin-6 testing for patients being assessed for periprosthetic joint infection [54]. Serologic 
tests can be hard to interpret when underlying inflammatory arthropathy is present [28]. More 



recently, the use of an alpha-defensin laboratory test has been described for the diagnosis of 
periprosthetic joint infection. Alpha-defensin is an antimicrobial peptide that is naturally released 
by neutrophils responding to a pathogen in the synovial fluid. Used as a biomarker for infection in 
synovial fluid, it has been demonstrated to be highly accurate in the diagnosis of prosthetic joint 
infection, nearly matching the Musculoskeletal Infection Society definition for prosthetic joint 
infection [55-57]. In a study by Deirmengian et al [56] of 149 synovial fluid aspirates, synovial fluid 
alpha-defensin tests alone demonstrated a sensitivity of 97% and a specificity of 96% for the 
diagnosis of periprosthetic joint infection, and the combination of synovial fluid alpha-defensin 
and CRP tests demonstrated a sensitivity of 97% and a specificity of 100% for the diagnosis of 
periprosthetic joint infection. A recent review suggests the preoperative workup for periprosthetic 
infection should include serum ESR rate and CRP, serum D-dimer, synovial fluid culture, cell count, 
and differential, leukocyte esterase, alpha-defensin, and synovial fluid ESR [58].

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
A. 3-phase bone scan knee
Tc-99m bone scintigraphy is more sensitive than radiographs in the detection of osteomyelitis [59]. 
However, periprosthetic uptake on bone scan is a nonspecific finding and cannot differentiate 
infection from aseptic loosening [60] and can be seen because of normal remodeling after 
prosthesis surgery (for up to 1-2 years or longer) [61], infection, aseptic prosthesis loosening [62], 
and/or periprosthetic fracture. Normal bone scans have a high negative predictive value (NPV) and 
indicate that infection, loosening, or fracture is unlikely. It is usually stated that bone scintigraphy is 
useful for excluding osteomyelitis and hence is useful as a screening study [30,59,63]. A 3-phase 
versus single-phase (a delayed-only skeletal acquisition) bone scan does not improve the accuracy 
of the test [64]. The accuracy of bone scans, either single phase or 3-phase, for diagnosing 
complications of lower extremity prosthesis is approximately 50% to 70% with a normal study, 
excluding a prosthetic complication as the cause of the patient’s symptoms [65]. The classic finding 
for an infected TKA is increased uptake on all 3 phases in the same location (a positive 3-phase 
bone scan) [30]. However, increased uptake is a nonspecific finding and may persist on a bone 
scan even as a postsurgical finding in the absence of infection and >1 year after surgery, and it can 
also be seen with aseptic loosening [59]. In fact, Duff et al [18] reported persistent bone scan 
activity in the absence of infection 2 years after surgery. This activity is not likely to be 3-phase 
positive. Bone scans can potentially be negative with loosening at the cement–prosthetic interface, 
which does not incite new bone formation [66]. Although Love et al [64] report that the use of 3-
phase bone scintigraphy does not improve the accuracy of the test, Smith et al [60] found that 
infection is more likely than aseptic loosening if there is increased uptake on both blood-pool and 
delayed images. Their analysis of 80 bone scans in patients with postoperative pain found that no 
patient with infection had a negative 3-phase bone scan [60]. Given the limited specificity of this 
test, patients with abnormal bone scans and suspected infection should undergo additional 
assessment to help in characterizing the bone scan abnormality [64]. Overall, 3-phase bone scans 
may be useful, even though their accuracy is lower than that of the WBC or FDG-PET/CT scan [63].

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
B. CT arthrography knee
CT joint arthrography can assess for lucency with contrast accumulation at the 
bone/cement/hardware interface. These areas of lucency are not specific for infection versus 
mechanical loosening.



Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
C. CT knee with IV contrast
CT has a limited role in the workup of periprosthetic infection. CT with IV contrast could help 
demonstrate periprosthetic fluid collections and fistulae. Advances in metal artifact reduction may 
expand the potential role of CT.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
D. CT knee without and with IV contrast
CT has a limited role in the workup of periprosthetic infection. Noncontrast CT can demonstrate 
the size and extent of osteolysis, periprosthetic lucencies, intraosseous or soft-tissue gas, and 
reactive bone formation that might not be evident on radiographs [20,67]. CT with IV contrast 
could help demonstrate periprosthetic fluid collections and fistulae. Advances in metal artifact 
reduction may expand the potential role of CT.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
E. CT knee without IV contrast
CT has a limited role in the workup of periprosthetic infection. Noncontrast CT can demonstrate 
the size and extent of osteolysis, periprosthetic lucencies, intraosseous or soft-tissue gas, and 
reactive bone formation that might not be evident on radiographs [20,67]. Advances in metal 
artifact reduction may expand the potential role of CT.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
F. FDG-PET/CT whole body
FDG-PET/CT scans may be useful for detecting infection after joint replacement. FDG-PET images 
reflect relative levels of glucose uptake and thus reflect the localized level of increased metabolic 
activity. Zhuang et al [68] reported that elevated glycolytic activity causes inflammatory cells such 
as neutrophils and activated macrophages to be FDG avid at sites of inflammation and infection. 
Some periprosthetic uptake may occur because of marrow activity, and adding marrow scanning 
can increase specificity [69]. In these instances, the marrow study would be performed the next day 
using a different camera type because the marrow scan relies on lower energy photons (PET, 
511keV; Tc-99m, 140 keV). Zhuang et al [68] studied 36 painful knee prostheses using FDG-PET 
and identified 10 of 11 infected cases but had false-positive results in 7 cases (sensitivity of 90.9%, 
specificity of 72%, and accuracy of 77.8% for detecting infection). This was a lower accuracy than 
found in assessment of hip prostheses. The cause for the large number of false-positives was not 
known. Aksoy et al [70] found a positive predictive value (PPV) of 28% (15 of 54) for infection in 54 
patients with painful joint prosthesis (24 knee, 48 hip) using FDG-PET. Manthey et al [71] reported 
that, by analyzing intensity and periprosthetic uptake patterns on FDG-PET, accurate differentiation 
among aseptic loosening, synovitis, and infection is possible. Kwee and Kwee [72] reports FDG 
uptake at the bone-prosthesis interface has been consistently reported as diagnostic criterion for 
knee prosthetic joint infection. Kwee et al [73] in a meta-analysis reported that the specificity of 
FDG-PET for diagnosing infection was significantly lower for knee prostheses (74.8%) than for hip 
prostheses (89.8%). Delank et al [74], in a series of both hip and knee prostheses, found that a 
negative PET scan excluded infection (100% sensitivity). If the scan was positive, differentiation 
between wear and infection was not possible. Prandini et al [75] performed a meta-analysis of the 



diagnostic performance of different radiotracers in peripheral osteomyelitis and prosthetic joint 
infections, yielding results for FDG-PET with a sensitivity of 94%, a specificity of 87%, a PPV of 87%, 
an NPV of 94%, and an overall accuracy of 92%. Although metal artifacts have very little impact on 
nuclear medicine examinations (except as photopenic defects) and create negligible scatter 
[68,76,77], high PET attenuation coefficients in the area of metal can lead to an overestimation of 
the PET activity in that region and thereby to a false-positive PET finding. Nonattenuated PET 
images, which do not manifest this error, can be used in these cases to aid the interpretation of 
these metal-induced artifacts.
 
Synovitis and aseptic loosening (in hip prostheses) may cause increased FDG uptake [69]. Sterner 
et al [78] examined 14 patients with painful TKA to detect early aseptic loosening. Overall accuracy 
was 71% (sensitivity, 100%; specificity, 56%). In addition, Stumpe et al [79] found diffuse synovial 
and focal extrasynovial FDG uptake in patients with component malrotation. They concluded that 
this test is noncontributory in individual patients with persistent pain. Studies in patients with hip 
prostheses have shown that postoperative remodeling can result in artifactual periprosthetic FDG 
uptake for up to 6 months after implant insertion [80]. Noting the lack of specificity for detection 
of periprosthetic infection on conventional FDG-PET, Aksoy et al [70] explored the use of FDG-
labeled leukocyte PET/CT for imaging patients with painful joint prostheses and found a sensitivity 
of 93%, a specificity of 97%, a PPV of 93%, and an NPV of 97%. However, this examination is not in 
general use. Basu et al [81] found the sensitivity, specificity, PPV, and NPV of FDG-PET in knee 
prostheses were 94.7%, 88.2%, 69.2%, and 98.4%, respectively, in 87 patients with knee prostheses 
suspected of being either infected or experiencing noninfectious loosening. Van Acker et al [82] 
investigated the use of FDG-PET in combination with bone scans and showed no advantage over 
HMPAO-labeled WBC and bone scans. Comparison of FDG-PET with In-111-labeled leukocyte/Tc-
99m-labeled sulfur colloid marrow imaging showed that FDG-PET was less accurate than the 
leukocyte/marrow scans and could not replace that combination of tests [69].

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
G. Fluoride PET/CT whole body
There is insufficient evidence to support the use of fluoride PET/CT for the initial evaluation of TKA.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
H. Fluoroscopy knee
Fluoroscopically positioned radiographs provide optimal visualization of the prosthesis–bone 
interface to help in demonstrating evidence of bone resorption about the prosthesis, especially in 
uncemented prostheses [30]. However, this finding by itself is nonspecific for distinguishing 
between infection, osteolysis, and mechanical loosening.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
I. Image-guided aspiration knee
Knee joint aspiration, often with fluoroscopy or ultrasound guidance, has been found to be 
extremely useful in diagnosing joint infection after TKA [45,47,83]. This can be performed on fluid 
aspirated either preoperatively or intraoperatively. Some authors prefer intraoperative aspiration 
because of better control of contaminants. The synovial fluid is usually evaluated with Gram stain, 
total and differential cell counts, and aerobic and anaerobic cultures [30,44], although Gram stain 



has a relatively poor sensitivity and specificity [84]. There are discrepancies in the literature with 
regard to the optimal cutoff levels for determining the WBC and percentage of polymorphonuclear 
leukocytes in the aspirated joint fluid that best distinguish infected from noninfected fluid [85,86]. 
Toms [87] proposed obtaining three samples, including one tissue sample, at the time of 
aspiration, with the test then considered positive when two specimens grow out the same 
antibiogram. An absence of fluid (ie, "dry tap”) at the time of aspiration does not necessarily 
indicate the absence of infection [88]. Duff [18] found sensitivity, specificity, and accuracy of 100% 
for aspiration in a series of 43 knees with pain, instability, loosening, or suspected infection 
undergoing surgical revision. In contrast, radiographic findings did not separate infected from 
noninfected patients. Virolainen [49] found joint aspiration to be 100% specific and 75% sensitive 
for diagnosing infection and to be the best test for diagnosing infection in a group of 68 total hip 
and knee replacement patients. Bach [45] found that early aspiration led to a significant reduction 
in the duration of treatment and a better outcome. In 16% of patients, more than three aspirations 
were necessary to obtain a positive culture. Barrack [89] noted that false negative aspirations may 
occur in patients who have had preaspiration antibiotic treatment. At least 2 weeks off antibiotics is 
supported before an aspiration is performed (with careful clinical monitoring for sepsis), but as 
long as a month may be necessary for cultures of aspirated fluid to become positive [30]. Weekly 
repeat aspirations may be needed if the first aspiration is negative and clinical suspicion for 
infection remains high. Even with a negative preoperative aspiration, intraoperative tissue may 
indicate infection. Bernard [50], after literature review and a multicenter trial, advocated CRP and 
joint aspiration as the best tools for diagnosing prosthetic joint infection. When the CRP level is 
>10 mg/L, repeat joint aspiration or biopsy is suggested. Della Valle [90] also found the 
combination of ESR and CRP to be a good screening tool for infection, with only one infected knee 
having negative results on both tests. These authors suggest preoperative aspiration if the ESR or 
CRP is elevated or if clinical suspicion is high, combined with intraoperative frozen section analysis 
of the periprosthetic synovial tissue [90]. The AAOS gives a moderate strength of recommendation 
for synovial fluid testing including leukocyte count and neutrophil percentage, aerobic and 
anaerobic bacterial cultures, leukocyte esterase, alpha-defensin, CRP, and nucleic acid amplification 
testing (eg, polymerase chain reaction) for bacteria [54]. A recent manuscript advises intraoperative 
synovial fluid re-cultures are necessary even if the preoperative aspiration culture is positive and 
any discordance between preoperative aspiration culture and intraoperative synovial fluid culture 
should be noted [91]. If the joint aspirate culture is positive on the basis of both cell count with 
differential and positive cultures, then infection is considered likely and treatment is initiated 
[54,92]. In that setting, no further imaging is supported for the diagnostic workup of the infection. 
Berbari [46] studied 897 cases of periprosthetic joint infection and found that approximately 7% 
were associated with negative cultures. If the preoperative synovial cultures remain negative, 
multiple intraoperative periprosthetic tissues should be submitted for aerobic and anaerobic 
bacterial culture [54].

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
J. MRI knee without and with IV contrast
MRI may have a role in the workup of periprosthetic infection. Advances in metal artifact reduction 
may expand the potential role of MRI. Using metal reduction techniques, Potter and Foo found 
that infected synovium has hyperintense laminar appearance, distinct from the appearance of 
particle disease [22,93]. They noted that, in selected cases, MRI may be helpful in detecting 
extracapsular spread of infection and abscess formation. IV contrast may provide additional benefit 
in this regard [93]. On the basis of their findings, Plodkowski [94] examined 28 patients with proven 



infected TKAs and 28 controls with noninfected TKA. They found a sensitivity of 86% to 92% and a 
specificity of 85% to 87%, with almost perfect interobserver agreement, when using the 
appearance of lamellated hyperintense synovitis to classify infected versus noninfected TKA. Li [95] 
also reported a different lamellated and hyperintense appearance of the synovium in infected 
joints, which can be differentiated from frond-like and hypertrophied synovium associated with 
particle-induced synovitis and from homogeneous fluid-signal intensity effusion associated with a 
nonspecific synovitis. MRI with metal artifact reduction technique has also been shown to detect 
osteolysis that is not visible on radiographs [96,97]. Contrast may provide additional benefit in 
detecting extracapsular spread of infection and abscess formation when compared to noncontrast 
MRI.

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
K. MRI knee without IV contrast
MRI may have a role in the workup of periprosthetic infection. Advances in metal artifact reduction 
may expand the potential role of MRI. Using metal reduction techniques, Potter and Foo found 
that infected synovium has hyperintense laminar appearance, distinct from the appearance of 
particle disease [22,93]. They noted that, in selected cases, MRI may be helpful in detecting 
extracapsular spread of infection and abscess formation. Plodkowski et al [94] examined 28 
patients with proven infected TKAs and 28 controls with noninfected TKA. They found a sensitivity 
of 86% to 92% and a specificity of 85% to 87%, with almost perfect interobserver agreement, when 
using the appearance of lamellated hyperintense synovitis to classify infected versus noninfected 
TKA. Li et al [95] also reported a different lamellated and hyperintense appearance of the synovium 
in infected joints, which can be differentiated from frond-like and hypertrophied synovium 
associated with particle-induced synovitis and from homogeneous fluid-signal intensity effusion 
associated with a nonspecific synovitis. MRI with metal artifact reduction technique has also been 
shown to detect osteolysis that is not visible on radiographs [96,97].

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
L. US knee
US has a limited role in the workup of periprosthetic infection, but it can be readily used to assess 
soft tissues, including the presence of edema, hyperemia, and fluid collections about the knee joint 
in patients with TKA. This may be beneficial in certain situations (eg, practices that may perform 
fluoroscopy-guided aspiration).

Variant 2: Suspected infection after total knee arthroplasty. Additional imaging following 
radiographs.  
M. WBC scan and sulfur colloid scan knee
Leukocyte scanning using In-111 was introduced in the 1980s [98]. WBCs may be radiolabeled in 
vitro with In-111 oxine or Tc-99m exametazime (Tc-99m hexamethylpropyleneamine oxime 
[HMPAO]) [99]. Labeling leukocytes in vitro requires that the patient’s venous blood sample be 
drawn and the WBCs isolated and radiolabeled [100]. The radiolabeled WBCs are then reinjected 
into the patient, with imaging performed 18 to 24 hours after injection of the radiolabeled WBCs 
[63]. Comparison of activity on the WBC image with activity on a bone scan (usually a 3-phase 
bone scan) has been advocated. A positive study for infection generally requires focal increased 
activity on the WBC study in the same location and distribution as the positive 3-phase bone scan 
[100]. Using a sequential combination of bone and In-111-labeled leukocyte scans in patients with 



loose or painful knee prostheses found a sensitivity of 88%, a specificity of 78%, a PPV of 75%, and 
an NPV of 90% for diagnosis of infection. They noted an area of potential utility for leukocyte 
scans, specifically that a negative indium leukocyte scan might support the absence of infection in 
otherwise equivocal cases and in situations in which a musculoskeletal pathologist is not available 
to interpret an intraoperative frozen section [100]. A small sample of indium scans in 
uncomplicated postoperative TKA patients has shown that inflammation can persist around the 
operative site in the absence of infection [100]. Bernard et al [50] reported a multicenter trial of 
various methods for diagnosing hip and knee infections. Scans using tagged WBCs or radiolabeled 
immunoglobulin demonstrated a sensitivity of 74% and a specificity of 76% for diagnosing 
infection. A literature review indicates sensitivities of 40% to 96% and specificities of 76% to 100% 
for WBC scans of joint prostheses [49,50,99-104]. Therefore, these studies are not useful as routine 
for differentiating mechanical failure from occult infection in painful loose total knee prostheses. 
Filippi and Schillaci [105] applied SPECT/CT using a hybrid camera to conventional planar Tc-99m-
HMPAO-labeled leukocyte scintigraphy in patients with suspected infection. SPECT/CT was able to 
differentiate soft-tissue involvement from bone involvement. The authors argued that SPECT/CT 
might eliminate the necessity for a correlative bone scan with labeled leukocyte scans. WBC scans 
also have a decreased sensitivity with low-grade infection [66] and a limited neutrophilic 
component. Labeled leukocyte imaging may lead to a high false-positive rate because leukocytes 
accumulate in reactive bone marrow as well as in infection and it is not always possible to 
differentiate between the two [64,106].
 
The addition of Tc-99m-labeled sulfur colloid bone marrow scanning has been investigated to 
reduce this confusion. Palestro et al [107] reported that sequential combined leukocyte/marrow 
imaging was 95% accurate for diagnosing prosthetic knee infection and was superior to bone 
scans alone or to bone scans in combination with labeled leukocyte imaging. Joseph et al [106] 
found that low sensitivity and the potential for false-negative results made this combination of 
scans of limited utility for diagnosing prosthetic infection, and therefore it is no longer used at 
their institution. In that group of 22 total knee prostheses evaluated and later operated upon, there 
was a sensitivity of 66%, a specificity of 100%, a PPV of 100%, an NPV of 88%, and an accuracy of 
91%. Blanc et al [108] did a retrospective review of 168 patients. They determined Tc-99m-HMPAO 
labeled leucocyte scintigraphy was more sensitive for knee (84%) than hip prosthesis (57%) but 
was less specific for knee (52% versus 75%). The addition of blood-pool and flow scans was 
investigated to determine if hyperemia led to a match of bone marrow-labeled leukocyte uptake 
(and therefore a false-negative scan). These additional scans decreased the number of false-
negative findings (sensitivity, 83%; specificity, 94%; PPV, 83%; NPV, 94%). Overall, the performance 
of the labeled leukocyte marrow scan protocol was nonetheless thought to be of limited clinical 
utility [106]. In contrast, Love et al [69] found the combination of In-111-labeled leukocyte/Tc-
99m-labeled sulfur colloid marrow scanning to be the reference standard for diagnosing 
periprosthetic infection. The authors found the combination of labeled WBC and marrow scanning 
to be 100% sensitive and 100% specific for diagnosing infection in TKA [69]. Semiquantitative 
assessment of WBC scans using a combination of early and delayed imaging as a substitute for 
bone marrow imaging produced a >90% sensitivity and specificity in one series [99]. Love et al 
[109] examined 150 failed joint prostheses with histopathologic correlation and found that 
leukocyte/marrow imaging yielded a sensitivity of 96%, a specificity of 87%, and an accuracy of 
91%. They found that leukocyte/marrow imaging was significantly more accurate than bone scan 
(50%), bone/gallium scan (66%), and leukocyte/bone imaging (70%) in their population.
 



WBC scan and sulfur colloid scan may have a role in the workup of suspected infection in knee 
arthroplasty.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.
Imaging of rotational instability of a TKA is discussed in greater detail under Variant 5. If a patient 
has undergone a full workup and infection has been excluded, then loosening should be 
considered as the potential cause of knee pain and periprosthetic lucency. In multiple studies, 
aseptic loosening has been found to be a common cause of TKA failure [13,110-112]. Sharkey et al 
[13] found aseptic loosening to be the major cause of late stage (>2 years) TKA failure. Aseptic 
loosening may occur either because of inadequate primary fixation or because of failure after 
successful fixation. It is thought to result from mechanical stresses, osteolysis secondary to particle 
debris, or poor bone stock [21]. Loosening may be closely related to other forms of mechanical 
failure such as osteolysis, instability, polyethylene liner wear, and periprosthetic fracture. Osteolysis 
is a leading cause of late TKA revision. Osteolysis, also known as particle disease and aggressive 
granulomatosis, occurs secondary to macrophage phagocytosis of particle debris. Debris 
originating from polyethylene, cement, and metal can all be causes of cell-mediated inflammatory 
response and osteolysis [113], but typically polyethylene is the most common cause. Areas of 
osteolysis contain granulation tissue with phagocytosed particulate debris [21]. The incidence of 
osteolysis is higher for cementless, compared with cemented TKA [114]. Osteolysis can occur 
anywhere but is more common in the region of the femoral condyles near the attachment of the 
collateral ligaments, along the periphery of the component, and along the access channels to the 
cancellous bone of the tibia, including screw holes [114,115]. Patients with osteolysis may be 
asymptomatic early on but can go on to develop pain, swelling, and acute synovitis.
 
Although small areas of osteolysis may be monitored, the presence of large areas of osteolysis 
suggest component loosening and may require revision surgery [116]. Imaging can also help 
evaluate available bone stock in preparation for revision surgery. Instability refers to abnormal and 
excessive displacement of the articular surfaces of the prosthesis [21]. Instability usually occurs 
because of surgical error and/or poor prosthesis selection and often results in revision surgery an 
average of 4 years after the primary arthroplasty [21]. Severe instability can result in dislocation. In 
a 2014 review of 781 cases of prosthesis failure, Sharkey et al [12] found that instability 
represented the third most common cause of prosthesis failure overall, accounting for 7.5% of all 
cases. The concepts of instability, malalignment, and loosening in TKA are closely interrelated 
[117]. When malalignment of the joint is created at the time of surgery, minor degrees of instability 
can become a significant problem. By the same token, instability, ongoing over time, can give rise 
to malalignment, which, in turn, can lead to loosening. Although ligamentous balance/imbalance 
plays a role in joint instability, it is not the only factor accounting for stability [118].

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
A. 3-phase bone scan knee
There is insufficient evidence to support routine use of Tc-99m 3-phase bone scans for the 
assessment of instability.
 
Bone scintigraphy may be helpful in diagnosing loosening, especially when obtained many years 
after surgery [62]. This delay in maximum utility is because of the observation that positive bone 
scans are noted in 20% of asymptomatic knees 1 year after surgery and in 12.5% of individuals 2 



years after surgery [61]. Serial bone scans may be more helpful than a single examination [119]. 
Generally, increased uptake on the delayed images but not on the blood-pool phase is thought to 
be due to loosening rather than to infection [60]. Normal scans are most helpful and are 
characterized by a high NPV, indicating that loosening or infection is unlikely. A potential false 
negative; however, may occur if there is loosening at the cement–prosthetic interface that does not 
incite new bone formation [66]. Smith et al [60] evaluated 80 bone scans in patients with 
symptomatic TKA, classifying even mildly increased activity on either blood-pool or delayed 
images as abnormal, and found a high sensitivity (92.3%) for distinguishing abnormal (ie, those 
with either loosening or infection) from normal TKA. The test was not specific in that it was unable 
to distinguish between aseptic loosening and infection [60]. If infection is excluded by other 
studies, loosening of the tibial component may be detected using quantitative analysis of bone 
scintigraphy, with a sensitivity of 90% and a specificity of 100% [120]. The 3-phase bone scan is 
moderately sensitive (76%) in identifying the failed joint prosthesis but with a specificity of only 
51% and an accuracy of 50% to 70% [121]. A positive 3-phase bone scan demonstrates increased 
periprosthetic uptake in both focal and diffuse patterns, but even with SPECT/CT it can still be 
difficult to distinguish between infection and aseptic loosening, the latter of which is due to either 
inadequate initial fixation, mechanical loss of fixation over time, or biologic loss of fixation caused 
by particle induced osteolysis around the implant. Murer et al [122] reports that the sensitivity and 
specificity for detection of tibial component loosening was 96.0% and 100%, respectively, and the 
sensitivity and specificity for detection of femoral component loosening was 95.0% and 100%, 
respectively. The bone scan; however, can be useful as a screening test, with a high NPV with 1 
caveat. Math et al [20] reported that increased periprosthetic uptake along the tibial or femoral 
stem was more indicative of loosening than uptake along the tibial tray. The authors also 
commented on the benefit of a contralateral asymptomatic TKA as a comparative control. 
Periprosthetic TKA uptake was also reported in more than 60% of femoral and nearly 90% of tibial 
components in asymptomatic patients for several years after surgery [123]. With a positive 3-phase 
bone scan, WBC and marrow imaging may be needed to delineate between infection and aseptic 
loosening, the latter of which can be related to particle disease.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
B. CT arthrography knee
CT joint arthrography can assess for lucency with contrast accumulation at the 
bone/cement/hardware interface. These areas of lucency are not specific for infection versus 
mechanical loosening.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
C. CT knee with IV contrast
CT with IV contrast is not useful for the assessment of aseptic loosening, osteolysis, or instability.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
D. CT knee without and with IV contrast
CT without and with IV contrast is not useful for the assessment of aseptic loosening, osteolysis, or 
instability.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  



E. CT knee without IV contrast
Particularly when metal artifact reduction techniques are used, CT can be used to show the extent 
and width of lucent zones that may be less apparent on radiographs [20]. MRI and CT have both 
been shown to be more sensitive for detection of osteolysis than radiographs [116]. CT can be 
used to detect osteolysis and to determine the total volume of osteolytic lesions, particularly when 
metal reduction techniques are used [124]. CT is supported by Math et al [20] to look for osteolysis 
in patients with painful knee prostheses who have normal or equivocal radiographs and increased 
uptake on all 3 phases of a bone scan. Reish et al [67] found that only 17% of 48 lesions visible by 
CT were detected on radiographs. They suggested multidetector CT in cases in which osteolysis is 
expected, such as when there is aseptic loosening and gross polyethylene wear.
 
CT allows the assessment of rotational positioning of the prosthesis components, which can affect 
patellofemoral tracking and varus/valgus ligamentous stability in flexion [125]. Imaging of 
rotational instability of a TKA is discussed in greater detail under Variant 5.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
F. FDG-PET/CT whole body
Sterner et al [78] examined 14 patients with painful TKA using FDG-PET to detect early aseptic 
loosening. Overall accuracy was 71% (sensitivity, 100%; specificity, 56%). Delank et al [74], in a 
series of both hip and knee prostheses, found that a negative PET scan excluded infection (100% 
sensitivity). If the PET scan was positive, then differentiation between wear and infection was not 
possible. Soft-tissue inflammation begins before prosthetic osteolysis, both of which are often 
asymptomatic until the need for surgery. Metallic artifact also hinders CT and MRI assessment of 
this osteolysis at the prosthetic-bone interface. FDG accumulates in cells with high glucose uptake. 
Other than tumor cells, FDG accumulates in areas of inflammation and infection because of 
activated lymphocytes, neutrophils, and macrophages. Jansen et al [66] reported that 
postoperative remodeling can be seen as nonspecific periprosthetic uptake in the first six months 
after arthroplasty. A negative FDG study has a high NPV for loosening related to particle disease, 
which incites a granulomatous response. Similar to bone scan, a false-negative scan may be seen if 
loosening occurs at the cement–prosthetic interface [66]. Increased FDG activity is sensitive but 
cannot differentiate between TKA infection and loosening [121].
 
There are varying reports on FDG sensitivity, specificity, and accuracy, which are likely in part 
related to nonuniform interpretation criteria and PET techniques. One overall estimate of FDG 
sensitivity, specificity, and accuracy in TKA is 96%, 77%, and 83%, respectively [126]. Although FDG 
is reportedly limited in evaluating patients with chronic knee pain after TKA [66,127], further 
advancements in FDG-PET may potentially be a promising tool in identifying prosthetic osteolysis 
[126]. Its exact role in the failed joint prosthesis; however, has yet to be determined. There is 
insufficient evidence to support routine use of FDG-PET/CT for assessment of instability.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
G. Fluoride PET/CT whole body
Koob et al [128] noted a sensitivity of 95.00%, a specificity of 87.04% and an accuracy of 89.19% for 
the diagnosis of periprosthetic loosening of total hip and knee prosthesis with fluoride PET/CT. 
There is insufficient evidence to support routine use of fluoride PET/CT for assessment of 
instability.



Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
H. Fluoroscopy knee
There is no recent evidence supporting the routine use of fluoroscopy for the assessment of 
aseptic loosening, osteolysis, or instability. Fluoroscopy may be useful to see lucent lines in profile 
that could be obscured on standard AP radiographs [20,129,130] and can also be useful for 
demonstrating loosening under real-time manipulation. It can be useful in optimally positioning 
the joint for detection of radiographic osteolysis [129,130] and facilitates dynamic assessment of 
the knee under stress. In older studies, this procedure was determined to be useful, but it has been 
supplanted by other modalities and is now infrequently performed.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
I. MRI knee without and with IV contrast
MRI without and with IV contrast is not useful for assessment of osteolysis or instability. The use of 
IV contrast for assessing loosening has not been described.

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
J. MRI knee without IV contrast
The literature regarding MRI in the detection of implant loosening is evolving, and the available 
evidence supports its use. Using metal artifact reduction techniques, Fritz et al [93] described what 
they posited are distinct appearances for an intact periprosthetic interface (direct contact of the 
implant or cement with the surrounding bone), a periprosthetic fibrous membrane that indicates 
limited implant fixation that may or may not progress to loosening (1- to 2-mm thick layer with 
smooth margins surrounding the prosthesis along the bone interface) and frank bone resorption (a 
periprosthetic layer >2-mm thick with irregular margins). They reserve the use of the term 
loosening for cases in which MRI demonstrates circumferential osseous resorption together with 
signs of implant displacement, subsidence, or rotation. In a study of 116 knees in 114 patients that 
evaluated the interface type (normal, fibrous membrane, fluid, or osteolysis), percent integration 
(<33%, 33%-66%, or >66%), and presence of bone marrow edema. They determined MRI had 
higher sensitivity (84% versus 31%) but lower specificity (85% versus 96%) for patellar component 
loosening than did radiography [131].
 
MRI and CT have both been shown to be more sensitive for detection of osteolysis than 
radiographs [116]. MRI with metal artifact reduction techniques can detect osteolysis that is not 
visible on radiographs, even around the femoral component [96]. An MRI investigation of 11 TKA 
suspected of osteolysis on radiographs (and subsequently confirmed by surgery) found 10 cases 
with osteolysis at MRI and confirmed at surgery, 5 cases with additional osteolytic lesions detected 
on MRI, and 9 cases in which lesions were larger on MRI than on radiographs [97]. MRI can also 
show synovial changes due to particle disease before osteolytic lesions become apparent [22].
 
When effective, metal suppression can be used, and MRI can allow direct visualization of ligaments 
and tendons about the knee [93].

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
K. US knee



US has no significant role in assessing for aseptic prosthesis loosening and is not typically used for 
the assessment of osteolysis. US can be used to evaluate synovitis and soft tissues about the joint 
and to guide joint aspiration [132]. US is not typically used for assessment of instability but can be 
used to visualize and assess the medial and lateral collateral ligaments in the setting of TKA [133].

Variant 3: Pain after total knee arthroplasty. Infection excluded. Suspect aseptic loosening or 
osteolysis or instability. Additional imaging following radiographs.  
L. WBC scan and sulfur colloid scan knee
In-111 WBC, Tc-99m labeled WBC, and Tc-99m sulfur colloid knee scans are not useful for 
evaluation of aseptic knee prosthetic loosening. WBC/marrow studies are used to differentiate 
prosthetic loosening from acute infection and can be performed without or with a corresponding 
bone scan, the latter without altering the WBC/marrow results [127]. A negative WBC scan negates 
an acute neutrophilic infection but may be falsely negative in chronic infection [101]. Love et al 
[109] reported WBC/marrow sensitivity, specificity, and accuracy as 96%, 87%, and 91%, 
respectively, for 150 total hip and knee replacements. Joseph et al [106] reported preoperative 
WBC/marrow imaging in 58 total hip and knee replacements with a sensitivity, specificity, and 
accuracy of 46%, 100%, and 88%, respectively. Palestro et al [107,134] described >90% accuracy 
and a specificity with a high sensitivity for WBC/marrow studies in the assessment of prosthetic 
joints. In the setting of chronic infection, differentiating chronic prosthetic infection from loosening 
can be more challenging, given that, in comparison with acute infections, chronic infections tend to 
have significantly fewer neutrophils, which are the predominant type of WBC labeled in an In-111 
or Tc-99m-HMPAO WBC study, and radiolabeled WBCs are predominantly neutrophils. A 
decreased WBC sensitivity in osteomyelitis has also been attributed to a bacterial protective 
membrane or biofilm and to the effect of antibiotics [66]. Nonetheless, WBC/marrow scans to 
include SPECT/CT appear to be the imaging procedures of choice, with a high degree of accuracy 
for the failed joint prosthesis in the setting of a positive 3-phase bone scan because a negative 
WBC/marrow study does not include aseptic loosening [66]. In-111 WBC and Tc-99m sulfur colloid 
studies are not useful for assessment of instability.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.
Periprosthetic fractures may occur either during or after surgery and can involve the femur, tibia, or 
patella. Among periprosthetic fractures, supracondylar distal femur fractures are most common, 
whereas patellar fractures are rare [135,136]. Supracondylar fractures occur in 0.3% to 2.5% of TKA, 
usually within 2 to 4 years after surgery, and often occur in the setting of low-energy trauma [136]. 
Tibial fractures are associated with loose components and malalignment. Patellar fractures are 
associated with rheumatoid arthritis, steroid use, osteonecrosis, and malalignment. Most patients 
with periprosthetic fractures are elderly, having poor bone stock. Treatment depends on fracture 
classification, which often includes information regarding fracture location, degree of 
comminution, and position and stability of the prosthesis.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
A. 3-phase bone scan knee
Radionuclide 3-phase bone scans can demonstrate increased activity at a site of periprosthetic 
fracture and can show fractures that are radiographically occult [137,138]. In older osteopenic 
individuals with low rates of bone remodeling, it may take 48 to 72 hours for the development of 
increased radionuclide activity at the site of fracture. Within 1 to 2 years after prosthesis surgery, 



the differential diagnosis for increased periprosthetic activity would include postoperative change; 
however, with serial imaging, this postoperative activity should decrease over time, whereas 
activity increasing over time would be suggestive of a prosthetic complication, such as a 
periprosthetic fracture, aseptic loosening, or infection. Therefore, no conclusion should be drawn 
on an isolated bone scan unless it yields a normal study.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
B. CT arthrography knee
There is no benefit to intraarticular contrast.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
C. CT knee with IV contrast
IV contrast is not helpful for CT assessment of periprosthetic fracture.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
D. CT knee without and with IV contrast
IV contrast is not helpful for CT assessment of periprosthetic fracture.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
E. CT knee without IV contrast
Radiographically occult fractures may be detected on CT when metal artifact reduction techniques 
are used [20].

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
F. FDG-PET/CT whole body
There is insufficient evidence to support the use of FDG-PET/CT for the assessment of 
periprosthetic fractures.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
G. Fluoride PET/CT whole body
There is insufficient evidence to support the use of fluoride PET/CT for the assessment of 
periprosthetic fractures.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
H. Fluoroscopy knee
There is insufficient evidence to support the use of fluoroscopy for the assessment of 
periprosthetic fractures.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
I. MRI knee without and with IV contrast
IV contrast is not helpful for CT or MRI assessment of periprosthetic fracture.



Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
J. MRI knee without IV contrast
Radiographically occult fractures may be detected on MRI [22] when metal artifact reduction 
techniques are used.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
K. US knee
There is insufficient evidence to support the use of US for the assessment of periprosthetic 
fractures.

Variant 4: Pain after total knee arthroplasty. Suspect periprosthetic or hardware fracture. 
Additional imaging following radiographs.  
L. WBC scan and sulfur colloid scan knee
There is insufficient evidence to support the use of In-111 WBC and Tc-99m sulfur colloid studies 
for the assessment of periprosthetic fractures.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.
Malposition of femoral and tibial components may affect patellar alignment [139]. Excessive 
combined internal rotation of tibial and femoral components has been shown to be associated 
with patellar complications [139]. Moreover, Berger and Rubash [140] found that the amount of 
excessive combined internal rotation is directly proportional to the severity of patellofemoral 
complications. Abdelnasser et al [141] noted an internal rotation of the tibial component in TKA 
can lead to postoperative extension deficit.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
A. 3-phase bone scan knee
There is insufficient evidence to support the use of bone scans for the assessment of rotational 
alignment of a TKA.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
B. CT arthrography knee
Intraarticular contrast is not helpful in the CT assessment of rotational alignment.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
C. CT knee with IV contrast
IV contrast is not helpful in the CT assessment of rotational alignment.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
D. CT knee without and with IV contrast
IV contrast is not helpful in the CT assessment of rotational alignment.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  



E. CT knee without IV contrast
CT is the modality most commonly used for measuring axial malrotation of a knee prosthesis. 
Jazrawi et al [142] studied the accuracy of a CT method for evaluating femoral and tibial 
component rotation and found the coefficient of variation between CT and digital imaging of 
cadaver specimens to average 0.87. The rotation of tibial and femoral components on cross-
sectional studies is most often evaluated using internal anatomic landmarks for reference 
[20,139,142]. Femoral component rotation may be assessed in relation to the transepicondylar axis 
[139,140], the Whiteside line [143], or the posterior femoral condyles [139,143]. Berger et al 
[139,140] constructed the transepicondylar axis from the lateral epicondyle to the trough in the 
medial epicondyle. Unfortunately, this trough is visible only in a little more than half of patients, 
and therefore measurement to the peak of the lateral epicondyle has also been used (known as the 
condylar twist angle) [40]. According to Berger and Rubash [140], the femoral component should 
be parallel to the transepicondylar axis, and the tibial component should be positioned in about 
18° of internal rotation in relation to the tibial tubercle. Three-dimensional CT studies may also be 
used for assessing component rotation [144]. According to Saffi et al [145], 3-D CT is the reference 
standard for measuring tibial component rotational alignment.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
F. FDG-PET/CT whole body
Stumpe et al [79] found diffuse synovial and focal extrasynovial FDG uptake in patients with 
component malrotation; however, FDG-PET/CT studies are not routinely used for the assessment of 
rotational alignment of a TKA.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
G. Fluoride PET/CT whole body
There is insufficient evidence to support the use of fluoride PET/CT for the assessment of rotational 
alignment of a TKA.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
H. Fluoroscopy knee
There is insufficient evidence to support the use of fluoroscopy for the assessment of rotational 
alignment of a TKA.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
I. MRI knee without and with IV contrast
IV contrast is not useful for MRI assessment of rotational alignment.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
J. MRI knee without IV contrast
When adequate metal reduction techniques are used, MRI can be used to assess TKA component 
rotation [146]. Anatomic landmarks and axes required for measurement of rotational alignment 
parameters can be identified [147,148]. In a study of 50 patients with painful TKA and 16 controls, 
Murakami et al [148] found high interobserver agreement in all the relevant rotational alignment 
measurements and found statistically significant relative internal rotation of the femoral 



component in patients with a painful TKA. MRI literature is evolving, and the available evidence 
suggests MRI may be useful in the assessment of component rotation with adequate metal 
reduction techniques.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
K. US knee
There is insufficient evidence to support the use of US for the assessment of rotational alignment 
of a TKA.

Variant 5: Pain after total knee arthroplasty. Measuring component rotation. Additional 
imaging following radiographs.  
L. WBC scan and sulfur colloid scan knee
There is insufficient evidence to support the use of In-111 WBC and Tc-99m sulfur colloid studies 
for the assessment of rotational alignment of a TKA.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.
The incidence of quadriceps or patellar tendon tears after TKA is low, at 0.17% to 2.5% [149]. 
Sharkey et al [12] reported that the incidence of postoperative arthrofibrosis is also relatively low, 
accounting for 4.5% of failures in this series and 6.9% of failures where noted in the Lombardi et al 
[111] series. Of note, patients with keloids have increased odds risk of arthrofibrosis following 
primary TKA [150]. Additional periprosthetic soft-tissue causes of postoperative knee pain are also 
uncommon and include impingement of nerves or other soft tissues.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
A. 3-phase bone scan knee
There is insufficient evidence to support the use of 3-phase bone scan for the assessment of 
periprosthetic soft-tissue abnormalities.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
B. CT arthrography knee
CT is not useful for assessment of periprosthetic soft-tissue abnormalities. Intraarticular contrast is 
not significantly helpful in the CT assessment of quadriceps or patellar tendon tears, postoperative 
arthrofibrosis, patellar clunk syndrome, or impingement of nerves or other soft tissues.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
C. CT knee with IV contrast



CT is not useful for assessment of periprosthetic soft-tissue abnormalities. IV contrast is not 
significantly helpful in the CT assessment of quadriceps or patellar tendon tears, postoperative 
arthrofibrosis, patellar clunk syndrome, or impingement of nerves or other soft tissues.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
D. CT knee without and with IV contrast
CT is not useful for assessment of periprosthetic soft-tissue abnormalities. IV contrast is not 
significantly helpful in the CT assessment of quadriceps or patellar tendon tears, postoperative 
arthrofibrosis, patellar clunk syndrome, or impingement of nerves or other soft tissues.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
E. CT knee without IV contrast
There is insufficient evidence to support the use of CT without IV contrast for the assessment of 
periprosthetic soft-tissue abnormalities.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
F. FDG-PET/CT whole body
There is insufficient evidence to support the use of FDG-PET/CT for the assessment of 
periprosthetic soft-tissue abnormalities.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
G. Fluoride PET/CT whole body
There is insufficient evidence to support the use of fluoride PET/CT for the assessment of 
periprosthetic soft-tissue abnormalities.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
H. Fluoroscopy knee
There is insufficient evidence to support the use of fluoroscopy for the assessment of 
periprosthetic soft-tissue abnormalities.

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
I. MRI knee without and with IV contrast



There is no relevant literature documenting the additional benefit of contrast, relative to 
noncontrast MRI, in the assessment of impingement, tendon abnormalities, or intraarticular 
abnormalities. Information regarding the use of MRI knee in the setting of in neoplastic masses 
and inflammatory pseudotumors is documented in the ACR Appropriateness Criteria® topic on 
"Soft Tissue Masses” [151].

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
J. MRI knee without IV contrast
MRI that uses robust metal reduction techniques can be used for evaluation of quadriceps or 
patellar tendinopathy in patients with TKA [152] and for evaluation of arthrofibrosis [93]. MRI can 
also demonstrate suprapatellar arthrofibrosis that can be associated with post TKA patellar clunk 
syndrome [147]. The presence of MRI measurable abundant thick fibrotic tissue in patients with a 
clinical diagnosis of knee fibrosis is of benefit to knee surgeons faced with patients with stiff TKA 
and can facilitate the decision to debride the knee, restore range of motion, and revise the implant 
[153]. MRI is beneficial for the workup of periarticular soft-tissue masses, including neoplastic 
masses and inflammatory pseudotumors [154].

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
K. US knee
US can be used for evaluation of quadriceps or patellar tendinopathy [155-157], postsurgical 
arthrofibrosis [158], and periarticular soft-tissue masses in patients with TKA. One review discusses 
the use of dynamic US to look for causes of snapping knee, including patellar clunk, snapping 
popliteus, and snapping related to component/liner malposition [159]. A case report discussed the 
utility of using dynamic US for the workup of patellar clunk syndrome [160].

Variant 6: Pain after total knee arthroplasty. Suspect periprosthetic soft-tissue abnormality 
unrelated to infection, including quadriceps or patellar tendinopathy (quadriceps or patellar 
tendon tears, postoperative arthrofibrosis, patellar clunk syndrome, or impingement of 
nerves or other soft tissues). Additional imaging following radiographs.  
L. WBC scan and sulfur colloid scan knee
There is insufficient evidence to support the use of In-111 WBC and Tc-99m sulfur colloid studies 
for the assessment of periprosthetic soft-tissue abnormalities.

 
Summary of Highlights

Variant 1: Radiography knee is usually appropriate for the initial imaging of symptomatic or 
asymptomatic patients with a total knee prothesis.

•

Variant 2: Image-guided aspiration knee is usually appropriate as the next imaging study for 
suspected infection after TKA following radiography.

•

Variant 3: In the setting of a painful knee prosthesis evaluated with radiography and when 
infection has been excluded, MRI knee without IV contrast or CT knee without IV contrast is 

•

https://acsearch.acr.org/docs/69434/Narrative/


usually appropriate as the next imaging study for aseptic loosening or osteolysis or 
instability. These procedures are equivalent alternatives (ie, only one procedure will be 
ordered to provide the clinical information to effectively manage the patient’s care).
Variant 4: In the setting of a painful knee prosthesis evaluated with radiography, CT knee 
without IV contrast is usually appropriate as the next imaging study for suspected 
periprosthetic or hardware fracture.

•

Variant 5: In the setting of a painful knee prosthesis evaluated with radiography, CT knee 
without IV contrast is usually appropriate as the next imaging study for measuring 
component rotation.

•

Variant 6: In the setting of a painful knee prosthesis evaluated with radiography, US knee or 
MRI knee without IV contrast is usually appropriate as the next imaging study for suspected 
periprosthetic soft-tissue abnormality unrelated to infection, including quadriceps or patellar 
tendinopathy (quadriceps or patellar tendon tears, postoperative arthrofibrosis, patellar clunk 
syndrome, or impingement of nerves or other soft tissues). These procedures are equivalent 
alternatives (ie, only one procedure will be ordered to provide the clinical information to 
effectively manage the patient’s care).

•

 
Supporting Documents
The evidence table, literature search, and appendix for this topic are available at 
https://acsearch.acr.org/list. The appendix includes the strength of evidence assessment and the 
final rating round tabulations for each recommendation. 
 
For additional information on the Appropriateness Criteria methodology and other supporting 
documents, please go to the ACR website at https://www.acr.org/Clinical-Resources/Clinical-Tools-
and-Reference/Appropriateness-Criteria.
 
Appropriateness Category Names and Definitions

Appropriateness 
Category Name

Appropriateness 
Rating Appropriateness Category Definition

Usually Appropriate 7, 8, or 9
The imaging procedure or treatment is indicated in 
the specified clinical scenarios at a favorable risk-
benefit ratio for patients.

May Be Appropriate 4, 5, or 6

The imaging procedure or treatment may be 
indicated in the specified clinical scenarios as an 
alternative to imaging procedures or treatments with 
a more favorable risk-benefit ratio, or the risk-benefit 
ratio for patients is equivocal.

May Be Appropriate 
(Disagreement) 5

The individual ratings are too dispersed from the 
panel median. The different label provides 
transparency regarding the panel’s recommendation. 
“May be appropriate” is the rating category and a 
rating of 5 is assigned.
The imaging procedure or treatment is unlikely to be 
indicated in the specified clinical scenarios, or the 
risk-benefit ratio for patients is likely to be 

Usually Not Appropriate 1, 2, or 3

https://acsearch.acr.org/list
https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria
https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Appropriateness-Criteria


unfavorable.
 
Relative Radiation Level Information
Potential adverse health effects associated with radiation exposure are an important factor to consider 
when selecting the appropriate imaging procedure. Because there is a wide range of radiation exposures 
associated with different diagnostic procedures, a relative radiation level (RRL) indication has been 
included for each imaging examination. The RRLs are based on effective dose, which is a radiation dose 
quantity that is used to estimate population total radiation risk associated with an imaging procedure. 
Patients in the pediatric age group are at inherently higher risk from exposure, because of both organ 
sensitivity and longer life expectancy (relevant to the long latency that appears to accompany radiation 
exposure). For these reasons, the RRL dose estimate ranges for pediatric examinations are lower as 
compared with those specified for adults (see Table below). Additional information regarding radiation 
dose assessment for imaging examinations can be found in the ACR Appropriateness Criteria® Radiation 
Dose Assessment Introduction document.
Relative Radiation Level Designations

Relative Radiation Level* Adult Effective Dose Estimate 
Range

Pediatric Effective Dose 
Estimate Range

O 0 mSv  0 mSv
☢ <0.1 mSv <0.03 mSv

☢☢ 0.1-1 mSv 0.03-0.3 mSv
☢☢☢ 1-10 mSv 0.3-3 mSv

☢☢☢☢ 10-30 mSv 3-10 mSv
☢☢☢☢☢ 30-100 mSv 10-30 mSv

*RRL assignments for some of the examinations cannot be made, because the actual patient doses in 
these procedures vary as a function of a number of factors (e.g., region of the body exposed to ionizing 
radiation, the imaging guidance that is used). The RRLs for these examinations are designated as “Varies.”
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