ACR—-ASNR-ASSR-SPR PRACTICE PARAMETER FOR THE
PERFORMANCE OF COMPUTED TOMOGRAPHY (CT) OF
THE SPINE

The American College of Radiology, with more than 40,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical
physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve
radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation
oncologists, medical physicists, and persons practicing in allied professional fields.

The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science
of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be
reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.

Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has
been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and
therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice

parameter and technical standard by those entities not providing these services is not authorized.

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for
patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are
not intended, nor should they be used, to establish a legal standard of carel. For these reasons and those set
forth below, the American College of Radiology and our collaborating medical specialty societies caution against
the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.
The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by
the practitioner considering all the circumstances presented. Thus, an approach that differs from the guidance in
this document, standing alone, does not necessarily imply that the approach was below the standard of care. To
the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth
in this document when, in the reasonable judgment of the practitioner, such course of action is indicated by
variables such as the condition of the patient, limitations of available resources, or advances in knowledge or
technology after publication of this document. However, a practitioner who employs an approach substantially
different from the guidance in this document may consider documenting in the patient record information
sufficient to explain the approach taken.

The practice of medicine involves the science, and the art of dealing with the prevention, diagnosis, alleviation,
and treatment of disease. The variety and complexity of human conditions make it impossible to always reach
the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it
should be recognized that adherence to the guidance in this document will not assure an accurate diagnosis or a
successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action
based on current knowledge, available resources, and the needs of the patient to deliver effective and safe
medical care. The purpose of this document is to assist practitioners in achieving this objective.

1 jowa Medical Society and lowa Society of Anesthesiologists v. lowa Board of Nursing, 831 N.W.2d 826 (lowa 2013) lowa Supreme Court refuses to find that

the "ACR Technical Standard for Management of the Use of Radiation in Fluoroscopic Procedures (Revised 2008)" sets a national standard for who may perform
fluoroscopic procedures in light of the standard'’s stated purpose that ACR standards are educational tools and not intended to establish a legal standard of
care. See also, Stanley v. McCarver, 63 P.3d 1076 (Ariz. App. 2003) where in a concurring opinion the Court stated that “published standards or guidelines of
specialty medical organizations are useful in determining the duty owed or the standard of care applicable in a given situation” even though ACR standards

themselves do not establish the standard of care.

I. INTRODUCTION

This practice parameter was developed collaboratively by the American College of Radiology (ACR), the American
Society of Neuroradiology (ASNR), the American Society of Spine Radiology (ASSR), and the Society for Pediatric
Radiology (SPR).

Computed tomography (CT) is a technology using ionizing radiation to generate images resulting from differential
X-ray absorption of the specific tissues examined. CT produces cross-sectional displays and allows for



multidimensional 2-D and 3-D reconstructions and offers a high degree of clinical utility for examining the spine.
This practice parameter outlines the principles for performing high- quality CT imaging of the pediatric and adult
spine.

Il. INDICATIONS

The complete clinical evaluation of spinal disorders may require the use of several different imaging modalities.
Depending on the nature of the disorder, CT may be the primary modality used or it may complement other
modalities such as radiography, magnetic resonance (MR), ultrasound (US), or nuclear imaging studies. The
strength of CT lies in the detailed depiction of bone; therefore, it has greatest utility in evaluating the osseous
spine, as opposed to soft-tissue structures, such as the spinal cord. Additionally, CT may also play an important
role in performing and monitoring invasive diagnostic and therapeutic procedures.

Primary indications for CT of the spine include, but are not limited to:

Il. INDICATIONS

A. Adult Spine Trauma

CT of the spine is considered a primary imaging evaluation of acute spine trauma in adults [1,2]. Meta-analysis of
blunt thoracolumbar trauma has demonstrated that CT is more accurate than radiographs for detecting thoracic
and lumbar spine fractures [3]. CT with intrathecal contrast (CT myelography) may be used to evaluate spinal
canal pathology related to trauma when MRI is contraindicated.

CT can be used for evaluating vertebral compression/insufficiency fractures in both acute and chronic clinical
situations [1,4-17]. Advances such as dual-layer spectral CT have demonstrated higher accuracy in detection of
acute osteoporotic vertebral body fracture bone marrow edema compared to conventional CT images [18].

Il. INDICATIONS

B. Pediatric Spine Trauma

CT is the primary modality of choice for pediatric patients who are obtunded or with low neurological score with
multiple sites of injury and/or high risk of mechanism of injury [19]. In some institutions, brain CT will include C1
to C3 of the cervical spine in pediatric patients with multiple injuries [19,20]. Other practices advise obtaining a
separate cervical spine CT with a lower dose than head CT if there is clinical concern of spinal injury. Given that
the majority of cervical spine injuries in children <8 years old (especially those <3 years old) are of soft tissue
rather than bone, the use of CT in this population may be of limited utility. If there is a clinical concern for spinal
injury, MRI (by itself or in conjunction with clinical observation) should be considered in younger pediatric
patients as an alternative or complement to a targeted CT of the area of concern.

Il. INDICATIONS

C. Degenerative Changes

CT is often used to study the spine for conditions such as spinal stenosis or in evaluating disc degeneration when
MRI is contraindicated. CT with intrathecal contrast (CT myelography) is better at delineating the spinal canal and
neural foramina in degenerative conditions. CT provides superior osseous delineation and may be
complementary to MRI for surgical planning [21]. For more information on CT myelography, see the
ACR—ASNR-SPR Practice Parameter for the Performance of Myelography and Cisternography [22]. Additionally, in
evaluating these conditions, CT may be helpful for presurgical planning and is complementary to MRI.

Il. INDICATIONS

D. Inflammatory Conditions

CT shows the presence and extent of osseous structural changes of the spine in the evaluation of inflammatory
lesions and deposition diseases [23,24]. Structural changes of the bone in inflammatory spondyloarthropathies
are well delineated on CT [25]. In ankylosing spondylitis, for example, CT is sensitive for syndesmophytes [25] and
ankyloses [26], fracture, and Andersson lesions [27]. Progression of syndesmophytes in ankylosing spondylitis can
be assessed on CT, which can contribute to sagittal malalignment [28]. CT for this application can be performed
with the additional use of an intrathecal contrast agent to better delineate spinal canal or neural foraminal
encroachment (see number 3).



Il. INDICATIONS

E. Bone Mineral Density

CT number measurements (in Hounsfield unit) on CT images reflect bone mineral density [29-34]. Opportunistic
CT number measurements on abdominal CT images obtained for other reasons [35-38] or on CT scans obtained
of arthropathy [39,40], degenerative disease [41], or for sacral fractures [42] can identify patients with
osteoporotic bone mineral density without additional radiation exposure or cost. In patients with sacral
insufficiency fractures, there is lower regional volumetric bone density of the sacrum when compared to a cohort
without fracture; this local sacral volumetric bone density as measured by CT is independent from the areal bone
mineral density (BMD) as measured by dual-energy X-ray absorptiometry of the lumbar spine [43]. Furthermore,
deep learning can be used to predict BMD of lumbar vertebrae from unenhanced abdominal CT images [44]. In
degenerative lumbar spine surgery, measurements with higher CT number results are associated with lower rates
of pseudarthrosis [45]. Despite the opportunistic utility of lumbar spine CT number measurements in identifying
osteoporosis in patients undergoing single-level fusion, these measurements have not been shown to be useful
in adult spinal deformity patients [46]. Other CT related modalities for quantitatively measuring bone metabolism
include areal bone mineral density measurement based on dual-layer spectral CT scout scans [47], quantitative
bone SPECT/CT [48] and quantitative CT or spectral detector CT, which is a 3-D method that can measure the
trabecular and cortical bone compartments [32,34,49-52].

Il. INDICATIONS

F. Alignment

Abnormalities related to alignment or orientation of the spine, such as scoliosis or spondylolysis, can be
demonstrated by CT multiplanar reformations, recognizing that the CT is obtained in the supine position, which
can affect alignment [53,54].

Il. INDICATIONS

G. Postoperative Evaluation

CT has shown utility in evaluating postoperative patients for accurate evaluation of osseous detail, implant/bone
graft position, fusion, and spinal instrumentation integrity [55]. CT myelography may be useful for spinal canal
and neural foraminal assessment in the setting of extensive hardware [56-59]. Quantitative CT can show
decreased volumetric BMD in adjacent levels [60]. Integrated bone SPECT/CT is a useful problem-solving modality
in evaluating patients with persistent or recurring pain after spinal surgery to identify areas of pseudarthrosis,
adjacent segment degeneration, hardware failure, and/or segmental motion [61,62]. SPECT/CT can also provide
structural and functional information to help identify pain generators in spine-related pain [63-66], which can
guide treatment [67].

Il. INDICATIONS

H. Infectious Processes

Infectious processes of the spine and paraspinal tissues can be evaluated on CT, recognizing that osseous
changes usually trail the clinical presentation [68]. Contrast-enhanced CT can be performed to demonstrate the
extent of soft-tissue involvement, particularly when MRI is not feasible. CT is complementary to MRl in
demonstrating osseous involvement and features that can optimize image-guided biopsy [69] and those that are
associated with poor clinical outcome [70]. Bone and gallium SPECT/CT is complementary to MRI in the diagnosis
of infectious spondylodiscitis [71].

Il. INDICATIONS

I. Neoplastic Conditions and Complications

CT can provide valuable information in the evaluation of primary or metastatic neoplasms of the spine, including
marrow-replacing conditions such as multiple myeloma. MRI and CT are often complementary in evaluating the
bone lesions. It can also provide valuable information in relation to complications of neoplastic disease, including
malalignment and pathologic fractures [72,73], and can provide important information about osseous integrity to
guide treatment planning.



Il. INDICATIONS

J. Image Guidance

CT of the spine can be used for imaging guidance before [74], during, and after various spine interventions (eg,
biopsy [69,75,76], aspiration, radiotherapy, stereotactic surgery [77], and spine injection) [78-80]. CT with
intrathecal contrast (CT myelography) may be helpful for preoperative planning. Vascular imaging with CT
arteriography can be used to identify critical vascular structures that may be affected by a surgical approach [81].
Intraoperative CT-guided navigation has shown to improve the safety, accuracy, and reliability of pedicle screw
placement [82,83] and to have a lower rate of malpositioned hardware and unplanned returns to the operating
room [84-86]. Studies have also shown that intraoperative CT-guided navigation enables adequate neural
decompression [87-89] and maximal tumor resection [90]. Additionally, intraoperative CT may reveal nonspinal
findings during spine instrumentation surgery [91].

Il. INDICATIONS

K. Developmental Spine Abnormalities

CT can provide valuable information in the evaluation of the osseous components of developmental spinal
anomalies and delineate developmental variants that might mimic fractures, complementary to MRI, which is
typically the first line of imaging in these evaluations [92]. Three-dimensional surface rendering images can aid in
visualization of these anatomic differences [93].

Depending on the age of the pediatric patient, CT may aid in identifying variations in ossification centers in the
setting of trauma or pain to rule out fracture [19].

Evaluation of intradural spinal canal pathologies, such as intradural metastases or arachnoid adhesions, is
performed using CT with intrathecal contrast (CT myelography) in situations in which MRl is contraindicated.
Primary spinal cord pathologies such as syrinxes are better assessed by MRI, but when MRI is contraindicated, CT
with intrathecal contrast (CT myelography) may provide some limited information [94].

For the pregnant or potentially pregnant patient, see the ACR—SPR Practice Parameter for Imaging Pregnant or
Potentially Pregnant Patients with lonizing Radiation [95].

lll. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL

See the ACR Practice Parameter for Performing and Interpreting Diagnostic Computed Tomography (CT) [96].
IV. SPECIFICATIONS OF THE EXAMINATION

A. Written Request for the Examination

The written or electronic request for a CT of the spine should provide sufficient information to demonstrate the
medical necessity of the examination and allow for its proper performance and interpretation.

Documentation that satisfies medical necessity includes 1) signs and symptoms and/or 2) relevant history
(including known diagnoses). Additional information regarding the specific reason for the examination or a
provisional diagnosis would be helpful and may at times be needed to allow for the proper performance and
interpretation of the examination.

The request for the examination must be originated by a physician or other appropriately licensed health care
provider. The accompanying clinical information should be provided by a physician or other appropriately
licensed health care provider familiar with the patient’s clinical problem or question and consistent with the
state’s scope of practice requirements. (ACR Resolution 35 adopted in 2006 — revised in 2016, Resolution 12-b)

IV. SPECIFICATIONS OF THE EXAMINATION

B. General Considerations

CT protocols require close attention and development by the supervising physician; they should be tailored to
the specific indication and to optimize the balance between image quality and radiation dose. See section VIl for
further information on radiation safety. Protocols should be reviewed and updated periodically in light of new
information, techniques, and technology. The supervising physician should be familiar with indications for each
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examination and the patient history (including potential adverse reactions to contrast media). The supervising
physician should also be familiar with the protocol specifications, including exposure factors, field of view (FOV),
collimation, slice spacing or pitch, and image reconstruction algorithms. These factors should be adjusted to
minimize radiation dosage to the minimum level required to adequately perform the specific examination. The
location of axial images should be indicated relative to a scout image and/or reconstructed sagittal or coronal
images.

IV. SPECIFICATIONS OF THE EXAMINATION

C. Spine Imaging

Helical acquisition with reconstruction of contiguous or overlapping axial slices at an optimal slice thickness
depending on the spinal segment of interest is required. It is beneficial in spine CT examinations to review
multiplanar reformations.

Metal artifacts caused by osteosynthetic material can impair image quality and degrade the diagnostic yield of CT
scans. In addition to conventional techniques (increasing tube current and increasing kV and peak voltage,
narrow collimation), metal-related artifacts can be reduced to some extent in different image reconstruction
algorithms such as iterative and projection-based approaches [97-99]. Other options such as dual-energy
techniques [100,101] and raw-data-based metal artifact reduction with iterative or projection-based algorithms
reported a significant reduction of metal artifacts and improved evaluation of periarticular soft tissues compared
to iterative projections alone [97,99,102-107], when available.

Images should be reviewed at window and level settings that are appropriate for demonstrating a range of
display densities, including soft-tissue and osseous abnormalities. This can be facilitated by reconstruction of
images with soft-tissue and osseous algorithms. Given the availability of several different types of CT scanners
from different manufacturers, consultation with the manufacturer regarding protocol recommendations is
advised in order to optimize spatial and contrast resolution.

It is important that the clinical information be reviewed so that the examination is obtained at the appropriate
level in which the patient is symptomatic. If the patient’s signs and symptoms are limited to a given level, CT of
the entire spine segment may not be necessary; for example, if spondylolysis at L5-S1 is suspected from clinical
examination and from plain radiographs, CT of the entire lumbar spine from T12 down is not necessary. This is
particularly important in pediatric patients [20]. Caution should be applied in the presence of transitional
anatomy. It is also important to be familiar with development variants that might mimic fractures [92].

IV. SPECIFICATIONS OF THE EXAMINATION
C. Spine Imaging

1. Cervical Spine

Multidetector CT imaging is the first choice modality for evaluation of cervical spine trauma in adults with
excellent image quality, up to 99% sensitivity and 100% of specificity for cervical spine fractures [108].

Evaluation of the craniocervical junction (skull base structures including sella and clivus) and cervical spine
requires thin sections for definitive diagnosis. Multiplanar reformations (sagittal and coronal) help identify the
exact location and displacement of fractures and define the extent of potential spinal canal, neural foraminal, or
vascular compromise. The reconstructed scan width should be no greater than 2 mm [1]. Primary evaluation for
the effects of cervical disc or facet degeneration should include 1- to 3-mm contiguous slices or axial reformats
obtained from pedicle to pedicle for each disc space, assessed in both bone and soft-tissue algorithms. Oblique
reformats perpendicular to the long axis of the neural foramina on both sides can sometimes be helpful in the
assessment of neural foraminal stenosis.

IV. SPECIFICATIONS OF THE EXAMINATION
C. Spine Imaging

2. Thoracic spine and lumbar spine



Acceptable technique (for all entities except evaluation of spine fusion integrity): Effective slice thickness should
be no greater than 2 mm [1] to allow for diagnostic reformation. The FOV should always be as small as
appropriate to improve geometric resolution. For evaluating spine fusion, contiguous slices of the involved spinal
segment(s) and at least a portion of the adjacent cranial and caudal normal segments within the acquisition
volume will allow a greater degree of certainty in detecting pseudarthrosis. Three-dimensional and/or
multiplanar reformations may be helpful for detecting solid or failed fusion. In polytrauma patients, patients may
undergo CT scans of the chest, abdomen, and pelvis to evaluate for other traumatic injuries. Current CT imaging
capability allows for reformatting to obtain imaging for screening thoracic, lumbar, and sacral injuries without
the need for repeat radiation exposure [109], but it needs to be optimized for this purpose.

IV. SPECIFICATIONS OF THE EXAMINATION

D. Pediatric CT Spine Imaging

A systematic algorithm approach using a combination of physical examination findings and radiographs can be
used to clear the cervical spine while minimizing radiation owing to the low rate of cervical spine injury in young
patients [110]. Two major clinical decision rules, the National Emergency X-Radiography Utilization Study
(NEXUS) criteria [111] and the Canadian C-Spine Rule [112], were demonstrated to have high negative predictive
values (97% and 100%, respectively) to rule out cervical spine injury in adults without the need for imaging. A
pediatric validation study showed that no clinically important injuries were missed when the NEXUS clinical
decision rule was used [113]. The ACR Appropriateness Criteria® Suspected Spine Trauma — Child [114] uses the
Pediatric Emergency Care Applied Research Network study to identify risk factors associated with cervical spine
injury in children 3 to 16 years old and the Pieretti-Vanmarcke score for patients <3 years old [115].

General radiography remains the first-line modality for the traumatized pediatric spine. CT imaging of the spine,
especially the cervical spine, can be problematic in the infant because of epiphyseal variants, incomplete
ossification of synchondroses, normal ligamentous laxity, and the propensity for ligamentous rather than bone
injury. Anatomic and age-related variants may mimic injury and prompt additional, potentially unnecessary,
imaging. Cervical spine injury in young children most commonly occurs from the occiput through C3 and typically
involves the ligaments to a greater extent than osseous structures. Although CT with multiplanar reconstruction
improves the detection of fractures, CT is insensitive to ligamentous, capsular, and soft-tissue injury, and the
potential risk from the radiation to the thyroid should be considered. Spinal cord injury may occur without
radiographic abnormalities, and a normal CT may result in a false-negative diagnosis after accidental or
nonaccidental trauma. MR is therefore the preferred modality in traumatized infants. In older children, generally
7 years and older, cervical spine injury has a similar distribution as in adults, and imaging workup strategies
should be similar to those employed in adults [116-123].

MRI is a more suitable investigation when spinal injuries are suspected, providing better information on soft-
tissue injuries as well as bone edema related to osseous injury. Although unstable cervical spine injuries are
better detected with CT scans, it is unlikely that these will be missed in the initial radiographs, and most of these
patients will be subjected to whole-body CT because of the severity of injury on presentation [124]. In children
with clinically suspected spinal fracture in the absence of red flag signs/symptoms and with negative radiographs,
further discussion between the emergency department, trauma, surgical spinal team (orthopedic or
neurosurgery), and radiology department should consider alternative radiation-free assessment or investigations
such as an MRI scan or clinical observation if appropriate to reduce the risk of CT-related radiation and its
associated hazards [125,126].

The effective dose to children from CT of the spine varies significantly depending on age and protocol. One study
recorded pediatric variations from 0.6 to 42 mSv [127]. Pediatric CT spine imaging should therefore be limited to
regions of radiographic and/or clinical concern and acquired using the lowest possible radiation exposure. A
number of public resources are available to medical personnel that stress the importance of dose reduction in
children. They include Image Gently (www.imagegently.org), Radiation Risks and Pediatric Computed
Tomography: A Guide for Health Care Providers (https://www.cancer.gov/about-cancer/causes-
prevention/risk/radiation/pediatric-ct-scans), and the FDA Public Health Notification, Reducing Radiation Risk
from Computed Tomography for Pediatric and Small Adult Patients
(http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062185.htm).
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IV. SPECIFICATIONS OF THE EXAMINATION

E. Contrast Studies

Certain clinical indications require the use of intravenous, intrathecal, epidural, perineural, or intra-articular
contrast agents. Intravenous contrast administration should be performed using appropriate injection protocols
and in accordance with the ACR—SPR Practice Parameter for the Use of Intravascular Contrast Media [128].
Intrathecal contrast administration should be performed in accordance with parameters outlined in the
ACR—ASNR-SPR Practice Parameter for the Performance of Myelography and Cisternography [22] and the ACR
Manual on Contrast Media [129].

IV. SPECIFICATIONS OF THE EXAMINATION

F. Advanced Applications

In addition to directly acquired axial images, 2-D reformatted images in any plane, 3-D reformatted images as
appropriate, and/or other more complex planes may be constructed from the axial data set to address specific
clinical questions, or the images may be manipulated in order to allow selective visualization of specific tissues.
Such applications are optimally performed with the original data sets as acquired on a multidetector CT scanner.

SPECT of the spine may be used as a complementary modality to allow more specific anatomic localization of
subtle, nonspecific abnormalities on bone scans, such as pars interarticularis fractures [130], facet joint arthritis,
or endplate osteophyte formation [131,132]. It can help distinguish compression fractures from severe
degenerative disease. Localizing activity in patients who have had spinal fusion can provide insight into the
causes of operative failures [61,62,133]. Functional information from SPECT/CT can guide treatment, such as
facet joint injection [134,135] or arthrodesis. Gallium SPECT/CT may be helpful in detection of the site of spinal
infections [131].

The applications for dual-energy CT in neuroradiology are expanding. Dual-energy CT offers tissue differentiation
and characterization, reduction of artifacts, and remodeling of contrast-to-noise ratio (CNR) and signal-to-noise
ratio (SNR). Monoenergetic reconstructions can be used in patients with or without metal implants in the brain
and spine to reduce artifacts, improve CNR and SNR, or to improve iodine conspicuity [136-138].

V. DOCUMENTATION

Reporting should be in accordance with the ACR Practice Parameter for Communication of Diagnostic Imaging
Findings [139].
VI. EQUIPMENT SPECIFICATIONS

A. Equipment

Patient monitoring equipment and facilities for cardiopulmonary resuscitation, including vital signs monitoring,
support equipment, and an emergency crash cart, should be immediately available. Radiologists, technologists,
and staff members should be able to assist with procedures, patient monitoring, and patient support. A written
policy should be in place for dealing with emergency situations such as cardiopulmonary arrest.

For diagnostic-quality spine CT, the scanner should meet or exceed the following specifications [140-142]:

. Type of scanner: multiple detector row, helical capability

. Gantry rotation period: 1 second or less

. Tube heat capacity to allow for study completion

. Acquisition slice thickness: <1 mm

. Reconstructed scan width: 1 to 5 mm

. Beam pitch: no greater than 2:1 Spatial resolution: > 8 LP/cm for Display FOV 32 cm or greater and >10
LP/cm for Display FOV 24 cm or smaller

7. Dose reduction techniques, such as tube-current modulation, variable tube potential, and advanced

reconstruction (eg, iterative), should be used to reduce exposure to patients.
8. Radiation monitoring techniques and the equipment to track radiation exposure

AUk WN

Appropriate emergency equipment and medications must be immediately available to treat adverse reactions
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associated with administered medications. The equipment and medications should be monitored for inventory
and drug expiration dates on a regular basis. The equipment, medications, and other emergency support must
also be appropriate for the range of ages and sizes in the patient population.

Equipment performance monitoring should be in accordance with the ACR—AAPM Technical Standard for
Diagnostic Medical Physics Performance Monitoring of Computed Tomography (CT) Equipment [143].

VI. EQUIPMENT SPECIFICATIONS

B. Quality Control

A comprehensive CT quality control program should be documented and maintained at the facility. The program
should help to minimize radiation risk to the patient, facility personnel, and the public and to maximize the
quality of the diagnostic information. CT facility personnel must adhere to radiation safety regulations when
inside the scanner room. Overall program responsibility should remain with the physician, but specific program
implementation should be supervised by the Qualified Medical Physicist in compliance with local and state
regulations, as well as manufacturer specifications. A list of quality control tests, frequency of performance, and
description of the procedure as well as a list of individuals or groups performing each should be maintained.
Moreover, the parameters of technique, equipment testing, and acceptability of limits for each test should also
be maintained in addition to sample records from each test. Quantitative dose determination should be
conducted periodically by a Qualified Medical Physicist in addition to equipment performance monitoring, as per
ACR recommendations.

The supervising physician should review all practices and policies at least annually. Policies with respect to
contrast and sedation must be administered in accordance with institutional policy as well as state and federal
regulations. A physician should be available on site whenever contrast and/or sedation is administered.

VII. RADIATION SAFETY IN IMAGING

Radiologists, medical physicists, non-physician radiology providers, radiologic technologists, and all supervising physicians have
a responsibility for safety in the workplace by keeping radiation exposure to staff, and to society as a whole, "as low as
reasonably achievable” (ALARA) and to assure that radiation doses to individual patients are appropriate, taking into account
the possible risk from radiation exposure and the diagnostic image quality necessary to achieve the clinical objective. All
personnel who work with ionizing radiation must understand the key principles of occupational and public radiation protection
(justification, optimization of protection, application of dose constraints and limits) and the principles of proper management
of radiation dose to patients (justification, optimization including the use of dose reference levels). https://www-
pub.iaea.org/MTCD/Publications/PDF/PUB1775_web.pdf

Nationally developed guidelines, such as the ACR’s Appropriateness Criteria®, should be used to help choose the most
appropriate imaging procedures to prevent unnecessary radiation exposure.

Facilities should have and adhere to policies and procedures that require ionizing radiation examination protocols (radiography,
fluoroscopy, interventional radiology, CT) to vary according to diagnostic requirements and patient body habitus to optimize
the relationship between appropriate radiation dose and adequate image quality. Automated dose reduction technologies
available on imaging equipment should be used, except when inappropriate for a specific exam. If such technology is not
available, appropriate manual techniques should be used.

Additional information regarding patient radiation safety in imaging is available from the following websites — Image Gently®
for children (www.imagegently.org) and Image Wisely® for adults (wWww.imagewisely.org). These advocacy and awareness
campaigns provide free educational materials for all stakeholders involved in imaging (patients, technologists, referring
providers, medical physicists, and radiologists).

Radiation exposures or other dose indices should be periodically measured by a Qualified Medical Physicist in accordance with
the applicable ACR Technical Standards. Monitoring or regular review of dose indices from patient imaging should be
performed by comparing the facility’s dose information with national benchmarks, such as the ACR Dose Index Registry and
relevant publications relying on its data, applicable ACR Practice Parameters, NCRP Report No. 172, Reference Levels and
Achievable Doses in Medical and Dental Imaging: Recommendations for the United States or the Conference of Radiation
Control Program Director’s National Evaluation of X-ray Trends; 2006, 2009, amended 2013, revised 2023 (Res. 2d).

VIIl. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION
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Policies and procedures related to quality, patient education, infection control, and safety should be developed
and implemented in accordance with the ACR Policy on Quality Control and Improvement, Safety, Infection
Control, and Patient Education appearing under the heading Position Statement on Quality Control &
Improvement, Safety, Infection Control, and Patient Education on the ACR website
(https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Quality-Control-and-Improvement).
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