PPTS Portal Home
Revised 2020 (Resolution 43)
Document Navigator
All
PREAMBLE
I. INTRODUCTION
II. INDICATIONS AND CONTRAINDICATIONS
III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL
IV. SPECIFICATIONS OF THE EXAMINATION
V. DOCUMENTATION
VI. EQUIPMENT SPECIFICATIONS
VII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION
ACKNOWLEDGEMENTS
REFERENCES
Document Navigator
ACR–ASNR–SNIS–SPR PRACTICE PARAMETER FOR THE PERFORMANCE OF CERVICOCEREBRAL MAGNETIC RESONANCE ANGIOGRAPHY (MRA)
PREAMBLE
I. INTRODUCTION
II. INDICATIONS AND CONTRAINDICATIONS
III. QUALIFICATIONS AND RESPONSIBILITIES OF PERSONNEL
IV. SPECIFICATIONS OF THE EXAMINATION
V. DOCUMENTATION
VI. EQUIPMENT SPECIFICATIONS
VII. QUALITY CONTROL AND IMPROVEMENT, SAFETY, INFECTION CONTROL, AND PATIENT EDUCATION
ACKNOWLEDGEMENTS
REFERENCES
1. [17194875]
Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics--2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007 Feb 06;115(5):e69-171.
2. [28524455]
Dyke LM. Magnetic Resonance Angiography: Principles and Applications. Med Phys. 2013 Dec;40(12).
3. [18952698]
Agarwal R, Brunelli SM, Williams K, Mitchell MD, Feldman HI, Umscheid CA. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009 Mar;24(3):856-63.
4. [17109993]
Boyd AS, Zic JA, Abraham JL. Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol. 2007 Jan;56(1):27-30.
5. [18372138]
Broome DR. Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol. 2008 May;66(2):230-4.
6. [19520215]
Bryant BJ, Im K, Broome DR. Evaluation of the incidence of nephrogenic systemic fibrosis in patients with moderate renal insufficiency administered gadobenate dimeglumine for MRI. Clin Radiol. 2009 Jul;64(7):706-13.
7. [16431890]
Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006; 21(4):1104-1108.
8. [17267695]
Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007; 243(1):148-157.
9. [23179483]
Schneider G, Schürholz H, Kirchin MA, Bücker A, Fries P. Safety and adverse effects during 24 hours after contrast-enhanced MRI with gadobenate dimeglumine (MultiHance) in children. Pediatr Radiol. 2013 Jan;43(2):202-11.
10. [-3188535]
American College of Radiology. ACR Committee on Drugs and Contrast Media. Manual on Contrast Media. Available at: https://www.acr.org/Clinical-Resources/Clinical-Tools-and-Reference/Contrast-Manual.
11. [20596870]
Huisman TA, Singhi S, Pinto PS. Non-invasive imaging of intracranial pediatric vascular lesions. Childs Nerv Syst. 2010 Oct;26(10):1275-95.
12. [-3098654]
American College of Radiology. ACR Practice Parameter for Performing and Interpreting Magnetic Resonance Imaging (MRI). Available at: https://gravitas.acr.org/PPTS/GetDocumentView?docId=146+&releaseId=2
13. [-3197619]
American College of Radiology. ACR–SIR Practice Parameter For Minimal and/or Moderate Sedation/Analgesia. Available at https://gravitas.acr.org/PPTS/GetDocumentView?docId=95+&releaseId=2
14. [21778188]
Bowers KJ, Deveber GA, Ferriero DM, Roach ES, Vexler ZS, Maria BL. Cerebrovascular disease in children: recent advances in diagnosis and management. J Child Neurol. 2011 Sep;26(9):1074-100.
15. [16418382]
Aviv RI, Benseler SM, Silverman ED, et al. MR imaging and angiography of primary CNS vasculitis of childhood. AJNR Am J Neuroradiol. 2006 Jan;27(1):192-9.
16. [15313719]
Chooi WK, Woodhouse N, Coley SC, Griffiths PD. Pediatric head and neck lesions: assessment of vascularity by MR digital subtraction angiography. AJNR Am J Neuroradiol. 2004 Aug;25(7):1251-5.
17. [15760762]
Chung T, Krishnamurthy R. Contrast-enhanced MR angiography in infants and children. Magn Reson Imaging Clin N Am. 2005 Feb;13(1):161-70, vi-vii.
18. [14669061]
Husson B, Lasjaunias P. Radiological approach to disorders of arterial brain vessels associated with childhood arterial stroke-a comparison between MRA and contrast angiography. Pediatr Radiol. 2004 Jan;34(1):10-5.
19. [17918531]
Mukundan S, Fuchs H, Alexander MJ, Grant GA. Dynamic contrast-enhanced magnetic resonance angiography of vascular malformations in pediatric patients. Case report. J Neurosurg. 2007 Sep;107(3 Suppl):228-31.
20. [2046905]
Padayachee TS, Bingham JB, Graves MJ, Colchester AC, Cox TC. Dural sinus thrombosis. Diagnosis and follow-up by magnetic resonance angiography and imaging. Neuroradiology. 1991;33(2):165-7.
21. [1892360]
Wiznitzer M, Masaryk TJ. Cerebrovascular abnormalities in pediatric stroke: assessment using parenchymal and angiographic magnetic resonance imaging. Ann Neurol. 1991 Jun;29(6):585-9.
22. [2213377]
Wiznitzer M, Ruggieri PM, Masaryk TJ, Ross JS, Modic MT, Berman B. Diagnosis of cerebrovascular disease in sickle cell anemia by magnetic resonance angiography. J Pediatr. 1990 Oct;117(4):551-5.
23. [12624288]
Cosottini M, Pingitore A, Puglioli M, et al. Contrast-enhanced three-dimensional magnetic resonance angiography of atherosclerotic internal carotid stenosis as the noninvasive imaging modality in revascularization decision making. Stroke. 2003 Mar;34(3):660-4.
24. [18556586]
Debrey SM, Yu H, Lynch JK, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke 2008;39:2237-48.
25. [15041456]
U-King-Im JM, Trivedi R, Cross J, et al. Conventional digital subtraction x-ray angiography versus magnetic resonance angiography in the evaluation of carotid disease: patient satisfaction and preferences. Clin Radiol. 2004 Apr;59(4):358-63.
26. [22430154]
Steinlin M. A clinical approach to arterial ischemic childhood stroke: increasing knowledge over the last decade. Neuropediatrics. 2012 Feb;43(1):1-9.
27. [15569881]
Willinek WA, von Falkenhausen M, Born M, et al. Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography: a prospective, intra-individual comparative analysis with digital subtraction angiography. Stroke. 2005 Jan;36(1):38-43.
28. [8259436]
Lévy C, Laissy JP, Raveau V, et al. Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography. Radiology. 1994 Jan;190(1):97-103.
29. [23232377]
Tolhurst SR, Vanderhave KL, Caird MS, et al. Cervical arterial injury after blunt trauma in children: characterization and advanced imaging. Journal of Pediatric Orthopedics. 33(1):37-42, 2013 Jan.
30. [18635617]
Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G. Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR Am J Neuroradiol. 2008;29(9):1753-1760.
31. [11039340]
Adams WM, Laitt RD, Jackson A. The role of MR angiography in the pretreatment assessment of intracranial aneurysms: a comparative study. AJNR Am J Neuroradiol. 2000 Oct;21(9):1618-28.
32. [18556359]
Anzalone N, Scomazzoni F, Cirillo M, et al. Follow-up of coiled cerebral aneurysms at 3T: comparison of 3D time-of-flight MR angiography and contrast-enhanced MR angiography. AJNR Am J Neuroradiol. 2008 Sep;29(8):1530-6.
33. [22081674]
Hetts SW, English JD, Dowd CF, Higashida RT, Scanlon JT, Halbach VV. Pediatric intracranial aneurysms: new and enlarging aneurysms after index aneurysm treatment or observation. AJNR Am J Neuroradiol. 2011;32(11):2017-2022.
34. [21775735]
Li MH, Li YD, Tan HQ, et al. Contrast-free MRA at 3.0 T for the detection of intracranial aneurysms. Neurology. 77(7):667-76, 2011 Aug 16.
35. [17569946]
Wallace RC, Karis JP, Partovi S, Fiorella D. Noninvasive imaging of treated cerebral aneurysms, part I: MR angiographic follow-up of coiled aneurysms. AJNR Am J Neuroradiol. 2007;28(6):1001-8.
36. [17050515]
Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26 Suppl 1:S19-41; discussion S42-13.
37. [11237970]
Liang L, Korogi Y, Sugahara T, et al. Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 2001;22:481-92.
38. [23624781]
Roccatagliata L, Bracard S, Holmin S, Soderman M, Rodesch G. Pediatric intracranial arteriovenous shunts: a global overview. Childs Nerv Syst. 2013 Jun;29(6):907-19.
39. [18195381]
Taschner CA, Gieseke J, Le Thuc V, et al. Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology. 2008 Mar;246(3):871-9.
40. [7639123]
Tsai FY, Wang AM, Matovich VB, et al. MR staging of acute dural sinus thrombosis: correlation with venous pressure measurements and implications for treatment and prognosis. AJNR Am J Neuroradiol. 1995 May;16(5):1021-9.
41. [17213414]
Aviv RI, Benseler SM, DeVeber G, et al. Angiography of primary central nervous system angiitis of childhood: conventional angiography versus magnetic resonance angiography at presentation. AJNR Am J Neuroradiol. 28(1):9-15, 2007 Jan.
42. [22183571]
Twilt M, Benseler SM. The spectrum of CNS vasculitis in children and adults. [Review]. Nat Rev Rheumatol. 8(2):97-107, 2011 Dec 20.
43. [15703900]
Zimmerman RA. MRI/MRA evaluation of sickle cell disease of the brain. Pediatr Radiol. 2005;35(3):249-257.
44. [16131804]
Houkin K, Nakayama N, Kuroda S, Nonaka T, Shonai T, Yoshimoto T. Novel magnetic resonance angiography stage grading for moyamoya disease. Cerebrovasc Dis. 2005;20(5):347-54.
45. [2027447]
Nüssel F, Wegmüller H, Huber P. Comparison of magnetic resonance angiography, magnetic resonance imaging and conventional angiography in cerebral arteriovenous malformation. Neuroradiology. 1991;33(1):56-61.
46. [15086226]
Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004 Feb;100(2):210-4.
47. [22398688]
Kim JS, Chandler A, Borzykowski R, Thornhill B, Taragin BH. Maximizing time-resolved MRA for differentiation of hemangiomas, vascular malformations and vascularized tumors. [Review]. Pediatr Radiol. 42(7):775-84, 2012 Jul.
48. [10931598]
Van Grimberge F, Dymarkowski S, Budts W, Bogaert J. Role of magnetic resonance in the diagnosis of subclavian steal syndrome. J Magn Reson Imaging. 2000 Aug;12(2):339-42.
49. [12052985]
Wutke R, Lang W, Fellner C, et al. High-resolution, contrast-enhanced magnetic resonance angiography with elliptical centric k-space ordering of supra-aortic arteries compared with selective X-ray angiography. Stroke. 33(6):1522-9, 2002 Jun.
50. [16155164]
Yang CW, Carr JC, Futterer SF, et al. Contrast-enhanced MR angiography of the carotid and vertebrobasilar circulations. AJNR Am J Neuroradiol 2005;26:2095-101.
51. [-3188538]
American College of Radiology. ACR Committee on MR Safety. 2024 ACR Manual on MR Safety. Available at: https://edge.sitecorecloud.io/americancoldf5f-acrorgf92a-productioncb02-3650/media/ACR/Files/Clinical/Radiology-Safety/Manual-on-MR-Safety.pdf.
52. [23345200]
Expert Panel on MR Safety, Kanal E, Barkovich AJ, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 37(3):501-30, 2013 Mar.
53. [-3197621]
American College of Radiology. ACR Practice Parameter for Communication of Diagnostic Imaging Findings. Available at https://gravitas.acr.org/PPTS/GetDocumentView?docId=74+&releaseId=2
54. [23088945]
Chandra T, Pukenas B, Mohan S, Melhem E. Contrast-enhanced magnetic resonance angiography. Magn Reson Imaging Clin N Am. 2012 Nov;20(4):S1064-9689(12)00099-2.
55. [-3197770]
Honglei Z, Zhang W, Prince MR. Technical aspect of contrast-enhanced magnetic resonance angiography. New York: Springer; 2012; 65-73.
56. [21504849]
Schanker BD, Walcott BP, Nahed BV, et al. Time-resolved contrast-enhanced magnetic resonance angiography in the investigation of suspected intracranial dural arteriovenous fistula. J Clin Neurosci. 2011 Jun;18(6):837-9.
57. [24287088]
Schrauben EM, Johnson KM, Huston J, et al. Reproducibility of cerebrospinal venous blood flow and vessel anatomy with the use of phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA. AJNR Am J Neuroradiol. 2014 May;35(5):999-1006.
58. [20512894]
Glockner JF, Takahashi N, Kawashima A, et al. Non-contrast renal artery MRA using an inflow inversion recovery steady state free precession technique (Inhance): comparison with 3D contrast-enhanced MRA. J Magn Reson Imaging. 2010;31(6):1411-1418.
59. [22532423]
Wu H, Block WF, Turski PA, Mistretta CA, Johnson KM. Noncontrast-enhanced three-dimensional (3D) intracranial MR angiography using pseudocontinuous arterial spin labeling and accelerated 3D radial acquisition. Magn Reson Med. 2013 Mar 01;69(3):708-15.
60. [24129947]
Wu H, Block WF, Turski PA, et al. Noncontrast dynamic 3D intracranial MR angiography using pseudo-continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging. 2014;39(5):1320-1326.
61. [19164440]
Babiarz LS, Romero JM, Murphy EK, et al. Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight MR angiography for determining > or = 70% internal carotid artery stenosis. AJNR Am J Neuroradiol 2009;30:761-8.
62. [14657322]
Willinek WA, Born M, Simon B, et al. Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging--initial experience. Radiology. 2003 Dec;229(3):913-20.
63. [-3197771]
Edelman RR, Hesselink J. Clinical Magnetic Resonance Imaging 3rd ed. Philadelphia, Pa: WB Saunders Co; 2004.
64. [17698518]
Wallace RC, Karis JP, Partovi S, Fiorella D. Noninvasive imaging of treated cerebral aneurysms, Part II: CT angiographic follow-up of surgically clipped aneurysms. AJNR Am J Neuroradiol. 2007 Aug;28(7):1207-12.
65. [12368742]
Nederkoorn PJ, Elgersma OE, Mali WP, Eikelboom BC, Kappelle LJ, van der Graaf Y. Overestimation of carotid artery stenosis with magnetic resonance angiography compared with digital subtraction angiography. J Vasc Surg. 2002 Oct;36(4):806-13.
66. [2106232]
Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol. 1990 Mar;154(3):623-9.
67. [-3197772]
Prince MR, Grist TM, Debatin JF. Contrast MR Angiography. Berlin, Germany: Springer-Verlag; 2003.
68. [15111663]
U-King-Im JM, Trivedi RA, Graves MJ, et al. Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology. 2004 Apr 27;62(8):1282-90.
69. [18768727]
Lim RP, Shapiro M, Wang EY, et al. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol. 2008 Nov;29(10):1847-54.
70. [19300100]
Lohan DG, Tomasian A, Saleh RS, Singhal A, Krishnam MS, Finn JP. Ultra-low-dose, time-resolved contrast-enhanced magnetic resonance angiography of the carotid arteries at 3.0 tesla. Invest Radiol. 2009 Apr;44(4):207-17.
71. [21458187]
Nael K, Moriarty JM, Finn JP. Low dose CE-MRA. Eur J Radiol. 2011;80(1):2-8.
72. [16523022]
Nael K, Ruehm SG, Michaely HJ, et al. High spatial-resolution CE-MRA of the carotid circulation with parallel imaging: comparison of image quality between 2 different acceleration factors at 3.0 Tesla. Invest Radiol. 2006 Apr;41(4):391-9.
73. [18504736]
Willinek WA, Hadizadeh DR, von Falkenhausen M, et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging. 2008 Jun;27(6):1455-60.
74. [9122407]
Foo TK, Saranathan M, Prince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology. 1997 Apr;203(1):275-80.
75. [12869686]
Nederkoorn PJ, Elgersma OE, van der Graaf Y, Eikelboom BC, Kappelle LJ, Mali WP. Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis. Radiology. 2003 Sep;228(3):677-82.
76. [12154253]
Nederkoorn PJ, Mali WP, Eikelboom BC, et al. Preoperative diagnosis of carotid artery stenosis: accuracy of noninvasive testing. Stroke. 2002 Aug;33(8):2003-8.
77. [12844086]
Townsend TC, Saloner D, Pan XM, Rapp JH. Contrast material-enhanced MRA overestimates severity of carotid stenosis, compared with 3D time-of-flight MRA. J Vasc Surg. 2003 Jul;38(1):36-40.
78. [26720181]
Amin-Hanjani S, Pandey DK, Rose-Finnell L, et al. Effect of Hemodynamics on Stroke Risk in Symptomatic Atherosclerotic Vertebrobasilar Occlusive Disease. JAMA Neurol. 73(2):178-85, 2016 Feb.
79. [23639564]
Ansari SA, Schnell S, Carroll T, et al. Intracranial 4D flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. AJNR Am J Neuroradiol. 34(10):1922-8, 2013 Oct.
80. [23928142]
Byrne G, Mut F, Cebral J. Quantifying the large-scale hemodynamics of intracranial aneurysms. AJNR Am J Neuroradiol. 2014;35(2):333-338.
81. [24029646]
Edjlali M, Roca P, Rabrait C, et al. MR selective flow-tracking cartography: a postprocessing procedure applied to four-dimensional flow MR imaging for complete characterization of cranial dural arteriovenous fistulas. Radiology. 270(1):261-8, 2014 Jan.
82. [24027116]
Markl M, Wu C, Hurley MC, et al. Cerebral arteriovenous malformation: complex 3D hemodynamics and 3D blood flow alterations during staged embolization. J Magn Reson Imaging. 2013 Oct;38(4):946-50.
83. [24151067]
Schnell S, Ansari SA, Vakil P, et al. Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology. J Magn Reson Imaging. 39(1):120-31, 2014 Jan.
84. [27469212]
Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2017 Feb;38(2):218-229.
85. [31072969]
Al-Smadi AS, Abdalla RN, Elmokadem AH, et al. Diagnostic Accuracy of High-Resolution Black-Blood MRI in the Evaluation of Intracranial Large-Vessel Arterial Occlusions. AJNR Am J Neuroradiol. 2019 Jun;40(6):954-959.
86. [30139751]
Bai X, Lv P, Liu K, et al. 3D Black-Blood Luminal Angiography Derived from High-Resolution MR Vessel Wall Imaging in Detecting MCA Stenosis: A Preliminary Study. AJNR Am J Neuroradiol. 2018 Oct;39(10):1827-1832.
87. [27659192]
Lee NJ, Chung MS, Jung SC, et al. Comparison of High-Resolution MR Imaging and Digital Subtraction Angiography for the Characterization and Diagnosis of Intracranial Artery Disease. AJNR Am J Neuroradiol. 2016 Dec;37(12):2245-2250.
88. [24380475]
DeMarco JK, Huston J. Imaging of high-risk carotid artery plaques: current status and future directions. Neurosurg Focus. 2014 Jan;36(1):E1.
89. [22627797]
Etesami M, Hoi Y, Steinman DA, et al. Comparison of carotid plaque ulcer detection using contrast-enhanced and time-of-flight MRA techniques. AJNR Am J Neuroradiol. 2013 Jan;34(1):177-84.
90. [21985544]
Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS. Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther. 2011 Oct;9(10):1315-30.
91. [22194363]
Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol. 2012 Apr;33(4):755-60.
92. [19508983]
Singh N, Moody AR, Gladstone DJ, et al. Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology. 2009 Aug;252(2):502-8.
93. [20876485]
Wasserman BA. Advanced contrast-enhanced MRI for looking beyond the lumen to predict stroke: building a risk profile for carotid plaque. Stroke. 2010 Oct;41(10 Suppl):S12-6.
94. [23850912]
Saam T, Hetterich H, Hoffmann V, et al. Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging. J Am Coll Cardiol. 2013 Sep 17;62(12):S0735-1097(13)02529-1.
95. [27528408]
Gupta A, Baradaran H, Al-Dasuqi K, et al. Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Meta-Analysis. [Review]. Journal of the American Heart Association. 5(8), 2016 08 15.J Am Heart Assoc. 5(8), 2016 08 15.
96. [31254918]
Wang Y, Liu X, Wu X, Degnan AJ, Malhotra A, Zhu C. Culprit intracranial plaque without substantial stenosis in acute ischemic stroke on vessel wall MRI: A systematic review. Atherosclerosis. 2019 Aug;287():S0021-9150(19)31375-9.
97. [30026386]
Larsen N, von der Brelie C, Trick D, et al. Vessel Wall Enhancement in Unruptured Intracranial Aneurysms: An Indicator for Higher Risk of Rupture? High-Resolution MR Imaging and Correlated Histologic Findings. AJNR Am J Neuroradiol. 2018 Sep;39(9):1617-1621.
98. [29969070]
Edjlali M, Guédon A, Ben Hassen W, et al. Circumferential Thick Enhancement at Vessel Wall MRI Has High Specificity for Intracranial Aneurysm Instability. Radiology. 2018 Oct;289(1):181-187.
99. [23151622]
Matouk CC, Mandell DM, Günel M, et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery. 2013 Mar;72(3):492-6; discussion 496.
100. [25332151]
Nagahata S, Nagahata M, Obara M, et al. Wall Enhancement of the Intracranial Aneurysms Revealed by Magnetic Resonance Vessel Wall Imaging Using Three-Dimensional Turbo Spin-Echo Sequence with Motion-Sensitized Driven-Equilibrium: A Sign of Ruptured Aneurysm?. Clinical Neuroradiology. 26(3):277-83, 2016 Sep.Clin Neuroradiol. 26(3):277-83, 2016 Sep.
101. [31048296]
Lehman VT, Brinjikji W. Vessel Wall Imaging of Unruptured Intracranial Aneurysms: Ready for Prime Time? Not so Fast!. AJNR Am J Neuroradiol. 2019 Jun;40(6):E26-E29.
102. [31221634]
Vergouwen MDI, Backes D, van der Schaaf IC, et al. Gadolinium Enhancement of the Aneurysm Wall in Unruptured Intracranial Aneurysms Is Associated with an Increased Risk of Aneurysm Instability: A Follow-Up Study. AJNR Am J Neuroradiol. 2019 Jul;40(7):1112-1116.
103. [27340338]
Paoletti M, Germani G, De Icco R, Asteggiano C, Zamboni P, Bastianello S. Intra- and Extracranial MR Venography: Technical Notes, Clinical Application, and Imaging Development. Behav Neurol. 2016;2016():2694504.
104. [10669228]
Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol. 2000 Jan;21(1):74-8.
105. [25255703]
Zivadinov R, Bastianello S, Dake MD, et al. Recommendations for multimodal noninvasive and invasive screening for detection of extracranial venous abnormalities indicative of chronic cerebrospinal venous insufficiency: a position statement of the International Society for Neurovascular Disease. J Vasc Interv Radiol. 2014 Nov;25(11):S1051-0443(14)00746-5.
106. [28833980]
Ferro JM, Bousser MG, Canhao P, et al. European Stroke Organization guideline for the diagnosis and treatment of cerebral venous thrombosis - endorsed by the European Academy of Neurology. Eur J Neurol 2017;24:1203-13.
107. [-3197773]
Patel MR. Brain imaging in venous sinus thrombosis. Available at: https://emedicine.medscape.com/article/338750-overview.
108. [-3197774]
Krinsky G. Body MR venography: The new gold standard. Available at: https://appliedradiology.com/articles/body-mr-venography-the-new-gold-standard. Accessed September 23, 2019.
109. [-3197775]
Campeau N, Patton A. Enhance 3D phase contrast angiographic magnetic resonance venography of the brain: initial clinical experience in 23 patients. Proceedings of the ISMRM Annual Meeting.
110. [2013]
Bland RD, Clarke TL, Harden LB. Rapid infusion of sodium bicarbonate and albumin into high-risk premature infants soon after birth: a controlled, prospective trial. Am J Obstet Gynecol. 1976 Feb 01;124(3):263-7.
111. [17170356]
Bartlett ES, Walters TD, Symons SP, Fox AJ. Carotid stenosis index revisited with direct CT angiography measurement of carotid arteries to quantify carotid stenosis. Stroke. 2007 Feb;38(2):286-91.
112. [7974588]
Eliasziw M, Smith RF, Singh N, Holdsworth DW, Fox AJ, Barnett HJ. Further comments on the measurement of carotid stenosis from angiograms. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke. 1994 Dec;25(12):2445-9.
113. [8421726]
Fox AJ. How to measure carotid stenosis. Radiology. 1993 Feb;186(2):316-8.
114. [16418349]
Bartlett ES, Walters TD, Symons SP, Fox AJ. Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol. 2006 Jan;27(1):13-9.
115. [10931569]
Sawyer-Glover AM, Shellock FG. Pre-MRI procedure screening: recommendations and safety considerations for biomedical implants and devices. J Magn Reson Imaging. 2000 Jul;12(1):92-106.
116. [15284433]
Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004 Sep;232(3):635-52.
117. [-3197776]
Shellock FG. Reference Manual for Magnetic Resonance Safety, Implants, and Devices. Los Angeles, Calif: Biomedical Research Publishing Group; 2005.
118. [-3197639]
American College of Radiology. ACR–AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance (MR) Imaging Equipment. Available at https://gravitas.acr.org/PPTS/GetDocumentView?docId=57+&releaseId=2